BRITE-Constellation Mission Update

By / par Catherine Lovekin (on behalf of the Canadian BRITE team)
(Cassiopeia – Spring / printemps 2021)

BRITE-Constellation is an international space astronomy mission consisting of a fleet of 20x20x20 cm nanosatellites dedicated to precision optical photometry of bright stars in two photometric colours. The mission continues in full science operations, with 38 datasets available in the public domain from the BRITE public archive. As of April of 2020, all data is made public as soon as decorrelation is complete, with no proprietary period.

The BRITE mission is a collaboration between Canadian, Austrian and Polish astronomers and space scientists. The Canadian partners represent University of Toronto, Université de Montréal, Mount Allison University, and Royal Military College of Canada. The mission was built, and the Canadian satellites operated by, the University of Toronto Institute for Aerospace Studies Space Flight Lab (UTIAS-SFL). The Canadian Space Agency funded the construction of the Canadian satellites, and continues to support their day-to-day operations.

Operations

There are five BRITE satellites in the Constellation, which work together to obtain well-sampled, long term continuous (~6 months) light curves in both red and blue band passes across a variety of sky fields.

As this issue of Cassiopeia went to press, the assignments of the BRITE nanosats was:

  • BRITE Toronto (Canada): This satellite observes with a red filter. It is currently observing the Orion-Taurus field for the third time.
  • BRITE Lem (Poland): Lem observes with a blue filter, but is currently idle due to unresolved stability issues.
  • BRITE Heweliusz (Poland): Heweliusz observes with a red filter. It is currently observing the Orion-Taurus field.
  • BRITE Austria (Austria): BRITE Austria observes with a red filter. It is currently observing in Orion, revisiting the field for the seventh time.
  • UniBRITE (Austria): Currently out of order.

The BRITE Constellation observing program is currently set through late 2021. Details of the observing plan will be available on the BRITE photometry Wiki page.

Recent Science Results

Figure 1. Photometry of β Aur from BRITE. Panel a) Full data set. Panel b) Periodograms. Panel c) Phased light curve with the orbital period. From Strassmeier et. al. (2020).


“BRITE photometry and STELLA spectroscopy of bright stars in Auriga: Rotation, pulsation, orbits, and eclipses”, Strassmeier et. al., 2020, A&A, 644, A104

The authors use continuous BRITE photometry and STELLA optical spectroscopy to study 12 targets in the constellation Auriga. The Capella red light curve was found to be constant over 176 days with a root mean square of 1 mmag, but the blue light curve showed a period of 10.1 ± 0.6 d, which the authors interpret to be the rotation period of the G0 component. From STELLA we obtained an improved orbital solution based on 9600 spectra from the previous 12.9 yr. We derive masses precise to ≈0.3% but 1% smaller than previously published. The BRITE light curve of the F0 supergiant ɛ Aur suggests 152 d as its main pulsation period, while the STELLA radial velocities reveal a clear 68 d period. An ingress of an eclipse of the ζ Aur binary system was covered with BRITE and a precise timing for its eclipse onset derived. A possible 70 d period fits the proposed tidal-induced, nonradial pulsations of this ellipsoidal K4 supergiant. η Aur is identified as a slowly pulsating B (SPB) star with a main period of 1.29 d and is among the brightest SPB stars discovered so far. The rotation period of the magnetic Ap star θ Aur is detected from photometry and spectroscopy with a period of 3.6189 d and 3.6177 d, respectively, likely the same within the errors. The radial velocities of this star show a striking non-sinusoidal shape with a large amplitude of 7 km s-1. Photometric rotation periods are also confirmed for the magnetic Ap star IQ Aur of 2.463 d and for the solar-type star κ1 Cet of 9.065 d, and also for the B7 HgMn giant β Tau of 2.74 d. Revised orbital solutions are derived for the eclipsing SB2 binary β Aur, which replaces the initial orbit dating from 1948 for the 27-year eclipsing SB1 ɛ Aur, and for the RS CVn binary V711 Tau, for which a spot-corrected orbital solution was achieved. The two stars ν Aur and ι Aur are found to be long-term, low-amplitude RV and brightness variables, but provisional orbital elements based on a period of 20 yr and an eccentricity of 0.7 could only be extracted for ν Aur. The variations of ι Aur are due to oscillations with a period of ≈4 yr.

Conferences, Resources, and Social Media

Conferences

The BRITE team does not plan to host any conferences this year.

Resources

The BRITE Public Data Archive, based in Warsaw, Poland, at the Nikolaus Copernicus Astronomical Centre, can be accessed here.

The mission Wiki (including information on past, current and future fields) can be accessed here.

BRITE Constellation is on Facebook, at @briteconstellation.

The BRITE International Advisory Science Team

The BRITE International Advisory Science Team (BIAST), which consists of BRITE scientific PIs, technical authorities, amateur astronomers, and mission fans, advises the mission executive on scientific and outreach aspects of the mission. If you’re interested in joining BIAST, contact Konstanze Zwintz, the chair of BEST.

Bookmark the permalink.

Comments are closed.