Gemini News/Nouvelles de Gemini

By/par Stéphanie Côté (NRC Herzberg)
(Cassiopeia – Summer/été 2016)

La version française suit

Some Stats About Semester 2016B

After a record crop of proposals last semester 2016A (the total number of hours requested was one of our largest demand in Canadian Gemini history), a more modest, although still healthy, request for Gemini time was received for semester 2016B. Gemini-South was slightly more oversubscribed at 1.65, than Gemini-North at 1.53 (using the ratio of requested time over the amount of time available in Band 1 and 2 to Canada; Band 1 + Band 2 hours correspond to the number of hours actually observed for Canadian programs each semester, while Band 3 is overfilling the queue).

As usual, up to close to 40% of the proposals were for MSc/PhD students’ theses this semester. Only a handful of ToO proposals were received (2 rapid and 2 standards). No Subaru Exchange proposals were received this semester, although this is not unusual.

Figure 1 - Oversubscription on Gemini-North (blue) and Gemini-South (red).

Figure 1 – Oversubscription on Gemini-North (blue) and Gemini-South (red).

Figure 2 - Number of Joint, Thesis, ToO and Subaru Exchange proposals received in the last semesters.

Figure 2 – Number of Joint, Thesis, ToO and Subaru Exchange proposals received in the last semesters.


For Semester 2016B, more proposals were received for GRACES (high-resolution spectroscopy) than for any other instruments including GMOS-N and GMOS-S. This is very rare and has only happened once before that an instrument is more popular than either GMOS (Flamingos2 managed this feat once, a few semesters ago). Note that the GRACES proposals are all for galactic work so far, even though its excellent throughput would allow to venture to extragalactic targets. On Gemini-South more proposals were received for GMOS-S and Flamingos2. On the pie chart (Figure 3) of % of time requested for each instrument Phoenix (near-IR high-resolution spectroscopy) is prominent, however this is due to a single large proposal that requested 30% of the G-South time.

Figure 3 - Pie charts of the percentages of time requested by each instrument, on Gemini-North (left) and Gemini-South (right).

Figure 3 – Pie charts of the percentages of time requested by each instrument, on Gemini-North (left) and Gemini-South (right).

News on Data Reduction Cookbooks!

GMOS users will be happy to know that the long-awaited “GMOS Data Reduction Cookbook” is now available! It is available here. It was written by Dick Shaw, from the US NGO, including input from the CGO. It covers everything from getting started in iraf/pyraf to processing all GMOS modes including Nod-&-Shuffle and IFU. It is easy to follow, with detailed iraf commands at each step. It also lists excellent on-line resources that could be helpful. Please make sure to check it out and send us your comments, or additions.

The next cookbook in the works will be for GSOAI/GeMs. In the meantime users can check out the excellent tutorials that were presented as a mini-AO workshop at the January AAS in Florida to help neophytes wishing to carry out AO programs. In particular check out the presentation from Tim Davidge on “AO 101: Setting up and characterizing observations of resolved stellar systems”, available here. There is also an excellent presentation covering the AO basics by Claire Max (University of California at Santa Cruz) on “Adaptive Optics for Astronomers: The Basics”, available here, and a more advanced tutorial by Franck Marchis (SETI Institute) on “Processing and Data Analysis With AO instruments: Challenges and Perspectives”, available here.

Recent Canadian Press Releases

  • In March 2016 was announced the discovery of the highest velocity C IV broad absorption line seen to date, in the z = 2.47 quasar SDSS J023011.28+005913.6. This was led by Jesse Rogerson (York University) as part of his thesis with supervisor Patrick Hall (York University), and including co-Is Paola Hildago & Patrik Pirkola (York University). About a quarter of quasars exhibit blueshifted broad absorption troughs at ultraviolet wavelengths. These features are a result of material lifted off the accretion disc surrounding the central supermassive black hole and blown away by the quasar radiation, driving the winds to high velocities which are observed as blueshifted absorption. The team sifted through SDSS spectra to select the best 100 new outflows from quasars to follow with GMOS. They discovered this outflow clocking at ∼60 000 km/s, the fastest ever seen. These high velocities outflows will help constrain theoretical acceleration models. The full press release is available here and the full paper is here.
  • Figure 4 - Three GMOS spectra obtained at different times of the z =2.47 quasar J0230 show the variability of the absorption features, especially the CIV near rest-frame wavelength 1550Å. (Figure 4 of  “Multi-epoch observations of extremely high-velocity emergent broad absorption”, Rogerson, Hall, Hidalgo et al, MNRAS, 457, 405).

    Figure 4 – Three GMOS spectra obtained at different times of the z =2.47 quasar J0230 show the variability of the absorption features, especially the CIV near rest-frame wavelength 1550Å. (Figure 4 of “Multi-epoch observations of extremely high-velocity emergent broad absorption”, Rogerson, Hall, Hidalgo et al, MNRAS, 457, 405).

  • In April 2016 a team led by Jens Thomas (MPIE) including co-Is Nicholas McConnell and John Blakeslee (NRC Herzberg) announced the discovery of one of the most supermassive black holes ever detected (weighing 17 billion suns), residing in an unlikely place. The biggest SMBHs have been found at the cores of very large galaxies in the dense central regions of rich clusters. This black hole, however, lives in a rather isolated galaxy, NGC1600, lying in a cosmic backwater town (a small group of galaxies). The authors speculate that NGC1600’s black hole might have grown by cannibalizing its former neighboring galaxies and their central black holes in its youth. This research was published in Nature and the press release is available here.
  • Figure 5 -  DSS Image of NGC1600 , a massive elliptical galaxy,  residing in a small group of galaxies; with a close-up view of the galaxy shown in the inset image, which was taken with HST/NICMOS. At the heart of NGC 1600 lurks one of the most massive black holes ever detected, weighing 17 billion suns.(Credit: NASA, ESA, and C.-P. Ma (UC Berkeley).

    Figure 5 – DSS Image of NGC1600 , a massive elliptical galaxy, residing in a small group of galaxies; with a close-up view of the galaxy shown in the inset image, which was taken with HST/NICMOS. At the heart of NGC 1600 lurks one of the most massive black holes ever detected, weighing 17 billion suns.(Credit: NASA, ESA, and C.-P. Ma (UC Berkeley).

  • In April 2016 was also announced the discovery of an especially young, free-floating planet-like analogue to Jupiter in our neighborhood (92 light-years away). Kendra Kellogg and her supervisor Stanimir Metchev (Western University) used Flamingos2 to confirm that 2MASS J1119–1137 is a young object of only about 10 million years, with a mass estimate to be between 4.3 and 7.6 MJup. It is the lowest-mass and nearest isolated member of TW Hydrae at a kinematic distance of 28.9 +/- 3.6 pc, and the second-brightest isolated <10 MJup object discovered to date. The full press release can be found here. This is the first Canadian paper coming out of the Fast-Turnaround program.


Quelques stats du semestre 2016B

Après une récolte record de demandes reçues le semestre dernier en 2016A (le nombre total d’heures demandées a été un des plus impressionnant de toute l’histoire de Gemini au Canada), une récolte plus modeste, bien que toujours adéquate, de demandes Gemini a été reçu pour ce semestre 2016B. Gemini-Sud a été un peu plus sursouscrit à 1.65, comparé à Gemini-Nord à 1.53 (en utilisant le rapport entre le temps demandé sur la quantité de temps disponible dans les Bandes 1 et 2 au Canada; les heures disponibles dans les Bandes 1 + 2 correspondent au nombre d’heures effectivement observées pour les programmes canadiens chaque semestre, tandis que Bande 3 est un surremplissage de la queue).

Comme d’habitude, jusqu’à près de 40% des demandes ce semestre ont été pour des thèses d`étudiants MSc / PhD. Seule une poignée de demandes ToO ont été reçues (2 rapides et 2 standards). Aucune demande d’échange avec Subaru n`a été reçue ce semestre, ce qui arrive à l`occasion et n`est pas anormal.

Figure 1 - Sursouscription à Gemini-Nord (bleu) et Gemini-Sud (rouge).

Figure 1 – Sursouscription à Gemini-Nord (bleu) et Gemini-Sud (rouge).

Figure 2 - Nombre de demandes jointes, pour thèse, ToO et d`échange avec Subaru reçues dans les derniers semestres.

Figure 2 – Nombre de demandes jointes, pour thèse, ToO et d`échange avec Subaru reçues dans les derniers semestres.


Pour le semestre 2016B, plus de demandes ont été reçues pour GRACES (spectroscopie à haute résolution) que pour tout autre instrument, y compris GMOS-N et GMOS-S. Ceci est très rare et ce n`est arrivé qu`une seule fois auparavant qu’un instrument soit plus populaire que GMOS (Flamingos2 a réussi cet exploit une fois, il y a quelques semestres). Notez que les demandes de GRACES sont toutes pour des études galactiques jusqu’à présent, même si son excellente transmission permettrait de s’aventurer vers des cibles extragalactiques. À Gemini-Sud ce sont GMOS-S et Flamingos2 qui ont reçus le plus grand nombre de demandes. Sur le graphique de la Figure 3 qui montre le temps demandé pour chaque instrument, Phoenix (spectroscopie à haute résolution dans le proche-IR) prend une grande place, mais cela est entièrement dû à une seule grande demande qui a demandé 30% du temps offert à G-Sud.

Figure 3 - Camemberts des pourcentages de temps demandés pour chaque instrument,  à Gemini-Nord (à gauche) et Gemini-Sud (à droite).

Figure 3 – Camemberts des pourcentages de temps demandés pour chaque instrument, à Gemini-Nord (à gauche) et Gemini-Sud (à droite).

Nouvelles sur les manuels de réduction de données!

Les utilisateurs GMOS seront heureux de savoir que le très attendu “GMOS Data Reduction Cookbook” est maintenant disponible! Il est disponible ici. Il a été écrit par Dick Shaw, de l’ONG américain, incluant des ajouts du CGO. Il couvre tout, de comment démarrer dans iraf / pyraf jusqu`au traitement de chacun des modes de GMOS, y compris Nod & Shuffle et l`Unité Intégral de Champ. Il est facile à suivre, avec des commandes IRAF détaillées à chaque étape. Il énumère également d’excellentes ressources en ligne qui pourraient être utiles. S’il vous plaît assurez-vous d`y jeter un coup d`oeil et de nous envoyer vos commentaires ou ajouts.

Le prochain manuel, encore en chantier, sera pour GSOAI / GeMs. En attendant les utilisateurs peuvent vérifier les excellents tutoriels qui ont été présentés lors d`un mini-atelier OA au AAS de janvier en Floride pour aider les néophytes qui souhaitent poursuivre des programmes OA. En particulier veuillez consulter la présentation de Tim Davidge sur “AO 101: Setting up and characterizing observations of resolved stellar systems”, ici. Il y a aussi une excellente présentation couvrant les bases de l`OA par Claire Max (Université de Californie à Santa Cruz) sur “Adaptive Optics for Astronomers: The Basics”, ici, et un tutoriel plus avancé par Franck Marchis (SETI Institute) sur ” Processing and Data Analysis With AO instruments: Challenges and Perspectives”, ici.

Récents Communiqués de presse canadiens

  • En Mars 2016 a été annoncée la découverte de la raie d’absorption large de CIV de la plus haute vitesse vue à ce jour, dans le quasar SDSS J023011.28 + 005.913.6 à z=2.47. L`étude a été dirigée par Jesse Rogerson (Université York) dans le cadre de sa thèse avec son superviseur Patrick Hall (Université York), incluant les co-Is Paola Hildago & Patrik Pirkola (Université York). Environ un quart des quasars présentent de larges raies d`absorption décalées vers le bleu à des longueurs d’onde ultraviolettes. Ces caractéristiques sont le résultat de matériaux soulevés en-dehors du disque d’accrétion qui entoure le trou noir supermassif central et emportés au loin par le rayonnement du quasar, entraînant des vents à des vitesses élevées qui sont observées en absorption décalées vers le bleu. L’équipe a passé au crible des spectres SDSS pour sélectionner les 100 meilleurs nouveaux vents de quasars à inspecter avec GMOS. Ils ont découvert ce vent de 60 000 km/s, le plus rapide jamais vu. Ces vents de hautes vitesses aideront à contraindre les modèles théoriques d’accélération. Le communiqué de presse complet est disponible ici et l`article complet est ici.
  • Figure 4 - Trois spectres GMOS obtenus à différentes époques du quasar J0230 à z = 2.47  montrent la variabilité des raies d'absorption, en particulier CIV près de la longueur d'onde de 1550A. (Figure 4 de “Multi-epoch observations of extremely high-velocity emergent broad absorption”, Rogerson, Hall, Hidalgo et al, MNRAS, 457, 405).

    Figure 4 – TTrois spectres GMOS obtenus à différentes époques du quasar J0230 à z = 2.47 montrent la variabilité des raies d’absorption, en particulier CIV près de la longueur d’onde de 1550A. (Figure 4 de “Multi-epoch observations of extremely high-velocity emergent broad absorption”, Rogerson, Hall, Hidalgo et al, MNRAS, 457, 405).

  • En Avril 2016 une équipe dirigée par Jens Thomas (MPIE) incluant les co-Is Nicholas McConnell et John Blakeslee (CNRC Herzberg) a annoncé la découverte d’un des trous noirs les plus supermassifs jamais détectés (de la masse de 17 milliards de soleils), résidant dans un endroit inattendu. Les plus grands SMBHs ont été trouvés dans les noyaux de galaxies très massives dans les régions centrales denses d`amas riches. Ce trou noir, cependant, vit dans une galaxie assez isolé, NGC1600, cachée dans un recoin cosmique tranquile (un petit groupe de galaxies). Les auteurs supposent que le trou noir de NGC1600 aurait grossi en cannibalisant ses anciennes galaxies voisines et leurs trous noirs centraux dans sa jeunesse. Cette recherche a été publiée dans Nature et le communiqué de presse est disponible ici.
  • Figure 5 -  Image DSS de NGC1600, une galaxie elliptique massive résidant dans un petit groupe de galaxies; avec une vue rapprochée de la galaxie figurant dans l'image en médaillon, qui a été prise avec HST / NICMOS. Au cœur de NGC 1600 se cache l'un des trous noirs les plus massifs jamais détectés, de la masses de 17 milliards de soleils (Crédit:. NASA, ESA, et C.-P. Ma (UC Berkeley).

    Figure 5 – Image DSS de NGC1600, une galaxie elliptique massive résidant dans un petit groupe de galaxies; avec une vue rapprochée de la galaxie figurant dans l’image en médaillon, qui a été prise avec HST / NICMOS. Au cœur de NGC 1600 se cache l’un des trous noirs les plus massifs jamais détectés, de la masses de 17 milliards de soleils (Crédit:. NASA, ESA, et C.-P. Ma (UC Berkeley).

  • En Avril 2016 a été également annoncée la découverte d’un objet de type planétaire analogue à Jupiter et particulièrement jeune, flottant librement, et très proche (à 92 années-lumière). Kendra Kellogg et son superviseur Stanimir Metchev (Université Western) ont utilisé Flamingos2 pour confirmer que 2MASS J1119-1137 est un jeune objet de seulement environ 10 millions d’années, avec une estimation de masse se situant entre 4,3 et 7.6 MJup. Il est l`objet de plus faible masse et le plus proche membre isolé de TW Hydrae à une distance cinématique de 28,9 +/- 3,6 pc, et le deuxième plus brillant objet isolé de masse <10 MJup découvert à ce jour. Le communiqué de presse complet se trouve ici. Ceci est le premier article canadien issu du programme Fast Turnaround.

NRC Herzberg News/Nouvelles du CNRC Herzberg

From/de Dennis Crabtree (NRC-Herzberg)
with contributions from/avec des contributions de Lewis Knee & Chris Willott

(Cassiopeia – Summer/été 2016)

La version française suit

These reports will appear in each issue of Cassiopeia with the goal of informing the Canadian astronomical community on the activities at NRC Herzberg.

Feedback is welcome from community members about how NRC Herzberg is doing in fulfilling our mandate to “operate and administer any astronomical observatories established or maintained by the Government of Canada” (NRC Act).

Canadian Time Allocation Committee (CanTAC)

CanTAC met in May at McGill in Montreal to discuss and rank CFHT and Gemini proposals for semester 2016B. The CanTAC SuperChair for this meeting was Scott Chapman (Dalhousie), while the Galactic panel chair was Stanimir Metchev (Western) and the Extragalactic panel chair was Alan McConnachie (NRC Herzberg). Dennis Crabtree continues to serve as the technical secretary.

The full list of CanTAC members for the November meeting was:

Galactic Extragalactic
Laurent Drissen (Laval) Peter Capak (Caltech)
Christopher Johns-Krull (Rice) Scott Chapman (Dalhousie)
Stanimir Metchev (Western) Julie Hlavacek-Larrondo (Montreal)
Leslie Rogers (Caltech) Alan McConnachie (Herzberg)
Samar Safi-Harb (Manitoba) Eric Steinbring (NRC)
Ingrid Stairs (UBC) Ludo van Waerbake (UBC)
Peter Stetson (Herzberg)

For Semester 2016B CanTAC received 29 CFHT proposals (13 Galactic and 16 Extragalactic) and 25 Gemini proposals (11 Galactic and 14 Extragalactic). There was a total of 538 hours requested on CFHT and 371 hours on Gemini. The subscription rates were 2.15 for CFHT, 2.6 for Gemini North and 3.2 for Gemini South.

The demand for both telescopes increased significantly from the last semester although the trend of receiving more Galactic than Extragalactic proposals continues.

Millimetre Instrumentation Group Update

The Millimetre Instrumentation Group (MIG) at NRC Herzberg in Victoria is involved in a number of technical developments for centimetre- to millimetre-wavelength astronomy.

ALMA

Support of the ALMA Band 3 (84 to 116 GHz) suite of receivers continues. The Band 3 cartridges are proving to be reliable and robust – significantly fewer receiver cartridges are returning to Victoria than originally anticipated. Recently, MIG delivered the first cartridge to Chile upgraded with magnetic field-defluxing heaters. Initial test results look promising, and a continuing series of noise temperature and power stability measurements is ongoing in order to confirm enhanced performance of the upgraded cartridge.

The ALMA Board has approved the Band 1 development project to go into cartridge production after a successful critical design review in Taipei. The Band 1 project is led by the East Asian ALMA partner. NRC Herzberg is contributing the Band 1 orthomode transducers (OMTs), passive waveguide structures which separate the two orthogonal linearly polarized components of the incoming signal before mixing and sideband separation.

Low Noise Amplifiers

Cryogenic low noise amplifiers (LNAs) are at the heart of radio receivers, and are one of the critical components which determine the overall sensitivity of the system. NRC Herzberg is at the forefront of radio astronomy LNA design. MIG has designed LNAs to be used in the 64-antenna South African meerKAT array, an SKA precursor instrument. In L-band (900 – 1670 MHz), our LNAs deliver high gain and stable performance while adding only ~ 2.5 K to the system noise temperature. A prototype meerKAT L-band receiver incorporating our LNAs recently tested on NRC’s DVA1 antenna in Penticton has confirmed a world-beating total receiver noise of only 6 K. NRC’s UHF-band (580 – 1015 MHz) meerKAT LNAs have a noise temperature of only ~ 1.0 K.

Cryogenic Phased Array Feeds

Figure 1 - Cutaway view of the NRC Herzberg cryogenic PAF.

Figure 1 – Cutaway view of the NRC Herzberg cryogenic PAF.


A number of groups worldwide are working on the development of phased array feed (PAF) receivers, which have the potential to outperform conventional single-pixels feeds in radio mapping if (among other factors), good sensitivity can be achieved. Designing and constructing efficient PAFs is a real challenge, and both lower-frequency (L-band, ~ 1.4 GHz) uncooled PAFs and higher-frequency (2.8 – 5.2 GHz) cryogenic PAFs are under development at NRC Herzberg in Penticton and Victoria respectively. The MIG’s cryogenic PAF is in an advanced stage of design with the construction and integration of component parts scheduled to begin this year. It is hoped that the completed PAF will attain very low-noise performance of ~ 10 K and thus demonstrate that PAFs can compete with single-pixel receivers in this frequency range.

In Figure 1, the 140-element array of dual-linear Vivaldi antennas at top is below a hemispherical radome. The 96 interior elements (gold) are active with a surrounding "guard ring" of inactive elements. The array of LNAs (partially obscured) lies directly below the antenna array and the coaxial lines extend downward and eventually out of the dewar. Note that in reality the coaxial lines will not be straight but will have bends to allow for thermal contraction when cooled to 16 K. The antenna array has an overall diameter of 31 cm.

JWST Update

Figure 2 - A rare view of the James Webb Space Telescope face-on in the Goddard clean room (May 2016).

Figure 2 – A rare view of the James Webb Space Telescope face-on in the Goddard clean room (May 2016).

Critical hardware of the James Webb Space Telescope (JWST) has come together in the last six months. The gold-coated primary segments, secondary and tertiary mirrors are installed onto the telescope structure. The science instruments emerged in excellent health from their final cryo-vacuum test and are mounted into the cavity behind the telescope. The whole telescope will undergo a series of environmental tests at Goddard Space Flight Center before heading to Johnson Space Center for final cryo-vacuum testing next year. Manufacturing of the sunshield and spacecraft also continue to make good progress with the schedule still being for launch in October 2018.

The Cycle 1 Call For Proposals is planned to be issued in late 2017 and many in the community are starting to make plans for how they will use the telescope. The Université de Montréal will host the conference “Exploring the Universe with JWST – II” the week of 24th to 28th October 2016. The idea of the conference is to give the astronomical community opportunities to present, highlight and discuss scientific programs that will be made possible by JWST. We hope to see many Canadians at the conference. Register here by 15th July.

In May 2016, NRC Herzberg Victoria hosted a meeting of all the JWST Guaranteed Time Observer (GTO) teams. There were about 80 attendees representing all the instrument teams and scientists with GTO allocations. The goal of the meeting was to coordinate the various science programs to make the most effective use of the observatory and provide feedback on the observation implementation process. The meeting was very successful and there is a high level of collaboration and coordination between the teams.



Les rubriques qui suivent reviendront dans chaque numéro du bulletin et ont pour but de tenir les astronomes canadiens au courant des activités de CNRC Herzberg.

Les commentaires des astronomes sur la manière dont CNRC Herzberg accomplit sa mission, c’est-à-dire « assurer le fonctionnement et la gestion des observatoires astronomiques mis sur pied ou exploités par l’État canadien » (Loi sur le CNRC), sont les bienvenus.

Comité canadien d’attribution de temps (CanTAC)

Les membres du CanTAC se sont réunis en mai à l’Université McGill à Montréal afin de discuter des propositions soumises pour le TCFH et l’observatoire Gemini pour le semestre 2016B, et les classer. Le super-président du CanTAC pour la réunion était Scott Chapman (Dalhousie), alors que le Groupe galactique était présidé par Stanimir Metchev (Western) et le Groupe extragalactique, par Alan McConnachie (CNRC Herzberg). Dennis Crabtree continue d’assumer le rôle de secrétaire technique.

Voici la liste complète des membres de CanTAC présents à la réunion de novembre:

Groupe galactique Groupe extragalactique
Laurent Drissen (Laval) Peter Capak (Caltech)
Christopher Johns-Krull (Rice) Scott Chapman (Dalhousie)
Stanimir Metchev (Western) Julie Hlavacek-Larrondo (Montreal)
Leslie Rogers (Caltech) Alan McConnachie (Herzberg)
Samar Safi-Harb (Manitoba) Eric Steinbring (NRC)
Ingrid Stairs (UBC) Ludo van Waerbake (UBC)
Peter Stetson (Herzberg)

Pour le semestre 2016B, CanTAC a reçu 29 propositions pour le TCFH (13 du Groupe galactique et 16 du Groupe extragalactique) ainsi que 25 propositions pour l’observatoire Gemini (11 du Groupe galactique et 14 du Groupe extragalactique). Au total, les candidats sollicitaient 538 heures d’observation au TCFH et 371 pour Gemini. Les taux d’adhésion étaient de 2,15 pour le TCFH, de 2,6 pour Gemini Nord et de 3,2 pour Gemini Sud.

Depuis le dernier semestre, la demande de temps d’observation aux deux télescopes a augmenté de façon importante, et ce, bien que la tendance à recevoir plus de propositions du Groupe galactique que du Groupe extragalactique persiste toujours.

Mise à jour du Groupe d’instrumentation millimétrique

Le Groupe d’instrumentation millimétrique de CNRC Herzberg à Victoria prend part à un certain nombre de développements techniques pour l’astronomie à ondes centimétriques et millimétriques.

ALMA

L’appui apporté à la gamme de récepteurs de bande 3 de l’ALMA (84 – 116 GHz) continue. Les cartouches du récepteur de bande 3 se révèlent fiables et robustes : beaucoup moins de cartouches sont retournées à Victoria que prévu au départ. Le Groupe a récemment expédié vers le Chili la première cartouche qu’on a améliorée en lui ajoutant des radiateurs magnétiques pour l’enlèvement de flux. Les premiers résultats semblent prometteurs, et une série continue de mesures de la température de bruit et de la stabilité de puissance est en cours pour confirmer l’augmentation de la performance de la cartouche améliorée.

Le conseil d’administration de l’ALMA a donné le feu vert à la production de cartouches dans le cadre du projet de développement de bande 1, après que le composant a passé avec succès l’examen conceptuel critique à Taipei. Le projet bande 1 est dirigé par le partenaire est-asiatique de l’ALMA. CNRC Herzberg fournit les jonctions orthomodes pour la bande 1, des structures de guide d’ondes passives qui séparent les deux composants orthogonaux polarisés linéairement du signal entrant avant de les mélanger et de les séparer en bandes latérales.

Amplificateurs à faible bruit (AFB)

Les amplificateurs à faible bruit cryogéniques sont au cœur des récepteurs de radio et représentent l’un des composants critiques qui déterminent la sensibilité générale du système. CNRC Herzberg est le chef de file en matière de conception d’amplificateurs à faible bruit pour la radioastronomie. Le Groupe d’instrumentation millimétrique a conçu des AFB destinés au réseau sud-africain de 64 antennes meerKAT, un instrument précurseur du radiotélescope du « Réseau d’un kilomètre carré ». Dans la bande L (900 – 1670 MHz), nos AFB produisent un rendement stable de haut gain en ajoutant seulement ~ 2,5 K à la température de bruit du système. Un récepteur prototype meerKAT pour bande L qui comprend les AFB récemment testés sur l’antenne DVA1 du CNRC à Penticton confirme un bruit de récepteur total, le meilleur au monde, de seulement 6 K. Les AFB meerKAT utilisant la bande à ultra-haute fréquence (580 – 1015 MHz) du CNRC enregistrent une température de bruit d’environ 1 K seulement.

Sources d’alimentation de réseaux phasés cryogéniques

Figure 1 - Vue transversale des sources d’alimentation phasées cryogéniques du CNRC.

Figure 1 – Cutaway view of the NRC Herzberg cryogenic PAF.

Un certain nombre de groupes dans le monde travaillent à développer des récepteurs pour les sources d’alimentation phasées, qui ont le potentiel de faire meilleure figure que les antennes à pixel unique ordinaires pour la cartographie radio si (entre autres facteurs), une bonne sensibilité peut être obtenue. Les sources d’alimentation de réseaux phasés à fréquence inférieure (bande L, ~ 1,4 GHz) non refroidies et celles à fréquence supérieure (2,8 – 5,2 GHz) cryogéniques sont en cours d’élaboration à CNRC Herzberg à Penticton et à Victoria respectivement; leur conception et leur fabrication sont un réel défi. La source d’alimentation de réseaux phasés cryogéniques du Groupe d’instrumentation millimétrique a atteint un stade avancé de conception. La fabrication et l’intégration des composants devraient commencer cette année. On espère que les sources d’alimentation phasées définitives offriront un rendement à faibles émissions sonores (~10 K), ce qui pourrait démontrer qu’elles peuvent rivaliser avec les récepteurs à pixel unique dans cette gamme de fréquence.

Dans la Figure 1, le réseau de 140 éléments d’antennes Vivaldi linéaires doubles est situé tout au haut sous un radôme hémisphérique. Les 96 éléments intérieurs (en or) sont actifs, entourés d’un anneau de garde d’éléments inactifs. L’éventail d’amplificateurs à faible bruit (partiellement masqués) se trouve directement sous le réseau d’antennes; les câbles coaxiaux s’étendent vers le bas et éventuellement à l’extérieur du dewar. En fait, les câbles coaxiaux ne seront pas déployés en ligne droite : ils seront courbés afin de compenser la contraction thermique au moment du refroidissement à 16 K. Le diamètre de l’antenne réseau mesure 31 cm.

Mise à jour du télescope spatial James Webb

Figure 2 - Rare cliché de face du télescope spatial James Webb dans la salle blanche du centre spatial Goddard (mai 2016).

Figure 2 – A rare view of the James Webb Space Telescope face-on in the Goddard clean room (May 2016).

Des composants essentiels du télescope spatial James Webb ont été regroupés au cours des six derniers mois. Les sections du miroir primaire, recouvertes d’une couche d’or, et les miroirs secondaire et tertiaire sont fixés à l’armature du télescope. Les instruments scientifiques sont ressortis en parfaite condition du récent essai cryogénique sous vide; ils sont installés dans la cavité derrière le télescope. L’ensemble du télescope fera l’objet d’une série de tests environnementaux au Goddard Space Flight Center avant d’être expédié au Johnson Space Center afin de subir, l’an prochain, les derniers tests cryogéniques sous vide. La fabrication d’un pare-soleil et d’un engin spatial continue d’avancer à bon rythme; le lancement est toujours prévu pour octobre 2018.

L’appel de propositions du cycle 1 est prévu pour la fin de 2017. Plusieurs membres de la communauté commencent à planifier la façon dont ils utiliseront le télescope. Du 24 au 28 octobre 2016, l’Université de Montréal accueillera la conférence « Explorer l’univers avec le télescope spatial James Webb – II ». L’optique de la conférence est de donner à la communauté des astronomes l’occasion de présenter, de souligner et de discuter des programmes scientifiques qui seront rendus possibles par le télescope. Nous espérons que beaucoup de Canadiens assisteront à la conférence. Pour vous inscrire, visitez d’ici le 15 juillet.

En mai 2016, CNRC Herzberg à Victoria a organisé une réunion de toutes les équipes disposant de temps d’observation garanti au télescope spatial James Webb. Environ 80 participants ont pris part à cette réunion. Ils représentent les scientifiques et les équipes d’instruments possédant des attributions de temps d’observation garanti. L’objectif de la réunion était de coordonner les divers programmes scientifiques pour utiliser l’observatoire le plus efficacement possible et de fournir de la rétroaction sur le processus de mise en œuvre du temps d’observation. La réunion a connu un franc succès, et les équipes ont fait preuve d’un niveau élevé de collaboration et de coordination.

President’s Report

By Bob Abraham, CASCA president
(Cassiopeia – Summer/été 2016)

Well, this is my first President’s Message, and even though I’ve only been in the job for ten days, it’s been enough time to learn two things:

(1) Many things that Chris Wilson made look effortless are hard work! We all owe her our thanks.

(2) Being the President of CASCA is like getting dropped into the deep end of the pool. In the last ten days I’ve met with the ACURA Board and Council, worked with the JCSA and the LRPIC committees to define a strategy for moving forward on the space-based component of the plan crafted by the MTR panel, crafted a letter to the CSA’s Space Advisory Board, and have begun working with my Coalition for Astronomy Co-Chairs to devise a stategic plan for communicating our message to the Canadian Government. That message will contain the story of our community’s many successes, relay our ambitious goals for the future, and make clear how we give back to Canada in a myriad number of ways.

CASCA is a wonderful community and it’s an honour to serve you all. Our work together is made infinitely easier because of the hard-working and dedicated members of the society that do things like serve on the CASCA board and on its many committees, and because so many people pull together to organize and run national meetings. A big thank you to you all, and I look forward to serving you for the next two years.

Past-President’s Report

Wison

From/de Christine Wilson
(Cassiopeia – Summer/été 2016)

Hi, everyone,

I have recently returned from the 2016 CASCA meeting in Winnipeg, which was a big success! The prize winning talks were uniformly excellent. Chris Pritchet (Beals Award) gave a comprehensive talk on the progenitors of Type IA supernovae that extended from the 1993 calibration of the stretch factor that allows these objects to be used as standard candles to very recent work suggesting that single degenerate binaries are likely not the progenitors. Peter Stetson (Dunlap Award) regaled us with a historical overview of photometry, starting with the first “computers” up to his current massive and impressive “Homogeneous Photometry Project”, punctuated by periodic questions for the audience of “Who under the age of 50 knows [xxx]?” and including props such as a photographic plate and (if memory serves) a piece of a photoelectric photometer. Jaymie Matthews (Qilak Award) gave an entertaining talk on his various outreach activities, including a collaboration with a shadow puppeteer and Science 101 for residents of Vancouver’s Downtown Eastside community. Jonathan Gagné (Plaskett Medal) described his major proper motion survey to search for young brown dwarfs in nearby moving groups by combining the WISE and 2MASS near-infrared surveys and using Bayesian analysis to prioritize targets for follow-up observations.

A highlight for many of us was the banquet talk by Wilfred Buck from the Manitoba First Nations Education Resource Centre on Ininew (Cree) constellations and the legends around them. CASCA’s new Diversity and Inclusivity Committee organized a special plenary session that was very well attended where participants were led to consider various scenarios around these issues and possible ways to act and respond. The public lecture was given by the 2015 Nobel Prize winner in Physics, Professor A. McDonald, who spoke about the building and research with SNO, future research plans with SNO-lab, and what it is like to be in Stockholm during prize week. And of course the meeting was filled with contributed talks, special invited talks, and time for looking at posters. I want to congratulate the winners of the 2016 student presentation awards: best talk was won by Fraser Evans (McMaster University) for his talk “Red Misfit Galaxies in the Sloan Digital Sky Survey” and best poster was won by Nicholas Fantin (Queen’s University) for his poster “Identifying Halo White Dwarfs within the NGBS Field”.

In other news, John Hutchings of NRC-Herzberg was presented with the John H. Chapman Award of Excellence from the Canadian Space Agency in recognition of his exceptional contribution to the Canadian Space Program. The award was presented in a ceremony at the 17th Conference on Astronautics of the Canadian Aeronautics and Space Institute (CASI ASTRO 2016) in Ottawa, Ontario. John has led Canada’s participation in landmark missions, such as the James Webb Space Telescope, the Far Ultraviolet Spectroscopic Explorer, the International Ultraviolet Explorer, the Hubble Space Telescope and the Ultraviolet Imaging Telescope on India’s ASTROSAT. The fact that he was able to lead so many major projects to fruition while maintaining excellent relations with international partners and a highly productive research career, is testimony to his skills, passion and perseverance. Congratulations to John on this award!

The report of the Mid-Term Review panel has been finished and released in electronic form to the community. The first draft of the French translation has been received and so we should be proceeding to print hard copies of the report very soon. I want to thank the chair of the MTR panel, Rob Thacker, and all the MTR panel members for all their time and effort to put together this excellent report. The Long Range Plan Implementation Committee has developed a 2-page summary of the report that is available for use in outreach to politicians, senior university administrators, and others who may not wish to read the whole report. The two-page summary is available in both English and French in the Long Range Plan area of the CASCA web site.

The Coalition for Canadian Astronomy has continued our outreach efforts with the new Federal Government with a letter to all new and returning MPs congratulating them on their election and introducing them to our community and Long Range Plan.

As I described in an earlier report, the Westar Lectureship is being re-instated under the guidance of the Education and Public Outreach Committee and the CASCA Board. The aim is to have the first Westar Lecture held this fall, possibly in the Yukon. Keep an eye on your inbox for information on how to apply to be a Westar Lecturer or nominate another excellent public speaker.

For updates on the various facilities that our community is involved in, such as TMT, SKA, and WFIRST, please see the committee reports on the CASCA web site or other articles in this issue.

Finally, as out-going President, I would like to thank the members of the CASCA Board and also all the CASCA committee members for their hard work on behalf of our community. I look forward to supporting our new President, Bob Abraham, and to working with the new Vice-President, Rob Thacker, and our two new Directors, Kristine Spekkens and Erik Rosolowsky.

Have a great summer!
Chris Wilson

John Hutchings wins CSA’s John H. Chapman Award of Excellence

In recognition of his exceptional contribution to the Canadian Space Program, Dr. John B. Hutchings was presented with the John H. Chapman Award of Excellence during a ceremony at the 17th Conference on Astronautics of the Canadian Aeronautics and Space Institute (CASI ASTRO 2016) in Ottawa, Ontario.

Dr. Hutchings has led Canada’s participation in landmark missions, like the James Webb Space Telescope, the Far Ultraviolet Spectroscopic Explorer, the International Ultraviolet Explorer, the Hubble Space Telescope and the Ultraviolet Imaging Telescope on India’s ASTROSAT. These missions are helping make significant advances in space science and new technologies. The fact that he was able to lead so many major projects to fruition while maintaining excellent relations with international partners and a highly productive research career, is testimony to his skills, passion and perseverance.

Dr. Hutchings is indeed an enormously productive scientist who has made several major scientific discoveries. Authoring over 450 publications, he is in the top 0.5% of most cited astrophysicists worldwide. This is truly a remarkable personal achievement that reflects on Canadian science and innovation. As a true leader, he also generously shared his knowledge and served as a mentor to a generation of brilliant minds.

The Chapman Award is a tribute to the distinguished career and achievements of an extraordinary individual, whose vision and contributions have shaped Canada’s space program.