President’s report


By Chris Wilson, CASCA president
(Cassiopeia – Winter 2014)

Hi, everyone,

This has been a busy fall for CASCA, ACURA, and the Coalition for Canadian Astronomy, with major lobbying efforts on behalf of the Thirty Meter Telescope (TMT). The three Coalition co-chairs (Don Brooks representing ACURA, Guy Nelson representing industry, and myself representing CASCA) traveled to Ottawa on October 20 to meet with staff members in the offices of the Minister of Industry, the Minister of Finance, and the Privy Council Office. We will be going back to Ottawa for additional meetings reaching out to different branches of the government on December 16. In November, Guy Nelson joined a Canadian trade mission to China, which gave him additional opportunities to raise the need for TMT funding with politicians involved in that visit. The individual co-chairs have also been busy writing letters to provide updates on the TMT project to other high-level politicians and their staff. In parallel, individual astronomers have had considerable success meeting with their university presidents and raising the TMT issue with them. Several of the key university presidents are now engaged with the TMT issue and are working to make this project a reality. The rules and application deadlines for the first round of the Canada First Research Excellence Fund (CFREF) were published in early December, which has been very helpful in clarifying the structure of this new funding program. While it may be that some part of the TMT funding can ultimately flow from CFREF, it seems clear that CFREF funding is unlikely to be the sole or even a major source of funds for the TMT construction project.

You might be wondering whether, with all the work we have been doing, we have been given any hints as to the likely success of obtaining TMT construction funding. The reality is that we will only learn whether or not we have been successful on the day that the 2015 federal budget is announced. The secrecy surrounding the federal budget is not new; indeed, we were in a similar situation in 2003 when we needed additional funding for ALMA. I remain cautiously hopeful that we will be successful in obtaining funding for the TMT.

Another important focus of our community this year is the Mid-Term Review (MTR) of the 2010 Long Range Plan, which is now well under way. There have been a very good number of white papers submitted to the MTR panel, with just a few late ones expected as I write this. The white papers are available in the MTR area of the CASCA web site and I urge you to have a look at the ones the overlap with your particular interests.

The MTR panel will be holding three town hall meetings in late March: in Montreal on Tuesday, March 24; in Toronto on Wednesday, March 25; and in Victoria on Thursday, March 26. Please try to attend one of these town hall meetings if you can; they are an important opportunity for you to raise issues with the MTR panel and for the panel to hear about the concerns and priorities of our wider community.

The CASCA Board has been hard at work for you this fall. We sent out a call to Canadian astronomers who were not yet members of the International Astronomical Union inviting them to apply for membership in advance of the 2015 IAU General Assembly, and over 40 people responded positively. We committed some of the surplus that had built up in the Westar fund to supporting the “Discover the Universe” initiative for the next three years, providing some much needed continuity as they wait to hear the results of the next round of NSERC PromoScience grants. We are also working with the EPO committee to decide how to rejuvenate the Westar public lecture series. We are continuing to work on completing the translation of key pages for the French version of the website and trying to do a better job keeping the English and French websites synchronized, for example by posting English-language press releases and job advertisements on both websites. We have completed the renewal of the members of the various CASCA committees and are starting to explore possible areas for collaboration with the Royal Astronomical Society of Canada (RASC).

I also want to draw your attention to the 2015 CASCA annual meeting, which will be hosted by McMaster University. The dates of the meeting are May 24-27, with an MTR session held for part of the day on May 28. You can expect to hear more information about the meeting in February via the email exploder. The 2016 AGM will be hosted by the University of Manitoba and Brandon University in Winnipeg.

Finally, congratulations to Sara Ellison, who in October was awarded the Rutherford Medal in Physics from the Royal Society of Canada.

Celebrating John Galt: a workshop and a telescope dedication

By Tim Robishaw and Sean Dougherty (DRAO)
(Cassiopeia – Winter 2014)

Sean Dougherty, Rena Galt & Tim Robishaw

Sean Dougherty, Rena Galt & Tim Robishaw

A workshop was held at Dominion Radio Astrophysical Observatory (DRAO) Sep 22 and 23 to celebrate the career of John A. Galt (1925-2012) and to dedicate the 26-meter telescope in his honour. John was the first employee of the observatory in 1957 and was its director from 1962 to 1981. Many former DRAO staff returned for the dedication ceremony to watch the Director General of NRC-Herzberg, Greg Fahlman, and John’s wife, Rena Galt, unveil a new sign on the tower of the 26-meter showing its new name, the “John A. Galt Telescope”. The new sign had been hidden behind a white sheet, held in place by a truly Galtian contraption of twine and paper clips. Plaques describing John’s accomplishments were mounted nearby.

DSC02309A number of distinguished visitors travelled to Penticton to provide an overview of the work that was done by John during his career as well as current work that has followed in the areas of John’s observational research. Topics covered included Zeeman splitting of the 21-cm line, the Dominion A catalog of 20-cm sources, protection of the radio spectrum, pulsars, fast radio bursts, long baseline scintillometry, radio observations of comets, diffuse polarized Galactic emission, and the CHIME telescope. Some of the first-time visitors to the observatory have suggested novel projects for the telescopes on site, including the new John A. Galt Telescope, with one researcher even planning to publish a paper using John’s extensive hydroxyl observations of Comet Halley using the 26-meter.

A website has been created collecting photos and presentations from the workshop, a historical timeline of John’s career, and a video interview with John.

ALMA Update

By Chris Wilson, Canadian ALMA Project Scientist
(with material from the NRAO newsletters and the ALMA web site)
(Cassiopeia – Winter 2014)

ALMA Current Status

The amazing image of HL Tau obtained by ALMA with 10+ km baselines. This image is at a wavelength of 1.3 mm and has an angular resolution of just 0.035” (5 AU at the 150 pc distance of HL Tau). The size of this disk is about 3 times the size of our solar system. Credit: ALMA (ESO/NAOJ/NRAO).

the amazing image of HL Tau obtained by ALMA with 10+ km baselines. This image is at a wavelength of 1.3 mm and has an angular resolution of just 0.035” (5 AU at the 150 pc distance of HL Tau). The size of this disk is about 3 times the size of our solar system. Credit: ALMA (ESO/NAOJ/NRAO).

ALMA construction is essentially finished. The Extension and Optimization of Capabilities (EOC) team continues to test and implement new capabilities for ALMA, including most recently high frequency (Bands 8-10) observing and long baseline observations. An important milestone was the acceptance of Total Power capabilities in November. Total power (or “single dish”) observations are important for getting information in extended sources on all spatial scales. In addition, the ALMA Pipeline is now in regular use for calibration and has also been released to the broader scientific community to use. The pipeline is part of a special CASA release 4.2.2 and is currently supported for Red Hat Linux and Mac OSX 10.8.

The 3 month dedicated Long Baseline Campaign from September through November has exceeded our expectations and produced some very exciting scientific results. One of these results, the extended protoplanetary disk HL Tau showing gaps produced by some combination of unseen planets and resonances, was the subject of a press release on November 5, 2014. The full press release is available. The other targets observed in this campaign were: a lensed galaxy at z~3, SDP.81; the evolved star Mira; the quasar 3C138 in linear polarization; and the asteroid Juno. All these Science Verification data will be released to the community for scientific exploitation; the target date for data release is January 31, 2015 (+/ 7 days).

“Revolution in Astronomy with ALMA: The Third Year”

A major ALMA meeting was held in Tokyo December 8-11, 2014. With 295 participants from 21 countries, this was a large and exciting meeting. We heard talks on everything from measuring the atmospheric properties of Mars and Io to observations of Milky-Way analog galaxies in the [CII] line and dust at redshifts of 5-7. Speaking as someone who has been involved in ALMA for over 15 years, it was extremely exciting to see such a wide range of exciting science results. I got to give the conference summary talk and it was a difficult job deciding what results to include! There was also an extremely high rate of participation by students, postdocs, and young faculty members, which bodes well for ALMA’s continuing success and scientific productivity. A conference proceedings is planned, so those who were not able to attend should be able to enjoy some of the results next year. In the meantime, many of the results are already or soon to be published, so search under ALMA using ADS or check the list of ALMA papers available via the NRAO library which lists 201 papers as of December 14, 2014.

ALMA Cycle 2 progress

Cycle 2 observing resumed December 1, 2014 after a 3 month hiatus to carry out the long baseline commissioning campaign (see above). An ALMA Cycle 2 status report is available. The report summarizes the status of Cycle 2 Early Science observations, including “Cycle 1 Transfer” projects, as of October 2014. It includes a summary of observing progress, the 12-m Array configuration schedule for the rest of Cycle 2 and a summary of the number of unfinished “high priority” observations by Band, LST and requested angular resolution. At the time the report was written, 369 hr of 12 m array observations had been obtained, with 1670 hr of A+B+Cycle 1 carryover observations remaining to be completed on the 12 m array. The median time between the data being taken and the data being delivered to the PI is about 60 days. The acceptance of the ALMA Pipeline (see above) may speed up this process.

PIs and Co-Investigators can consult the Project Tracker for information on the execution of an accepted project. PIs can also modify their user profile at the Science Portal to receive e-mail notifications whenever a component of a project is first observed, fully observed, or successfully processed.

ALMA Cycle 3 pre-announcement

The expected capabilities and timing for ALMA Cycle 3 were released last week. All 7 receiver bands will be available as well as long baselines (up to 2 km for Bands 8-10, up to 5 km for band 7, up to 10 km for Bands 3-6). Please consult the announcement for further details. The key dates for Cycle 3 are:

  • 24 March 2015: Call for Proposals for ALMA Early Science Cycle 3, release of Observing Tool, and opening of the Archive for proposal submission.
  • 23 April 2015: Proposal Deadline.
  • August 2015: Result of the proposal review process sent to PIs.
  • October 2015: Start of ALMA Cycle 3 observations.
  • September 2016: End of ALMA Cycle 3 observations.

Further Information

This will be my last regular ALMA update for E-Cass as Canadian Project scientist, so it is especially important to point out that a good source for monthly updates on the ALMA project is the electronic NRAO newsletter. And don’t forget the ALMA observatory web site which contains wide range of information about the observatory, including details about science and technology, infrastructure, geographical location. The ALMA Observatory web site has an especially good list of press releases that you can use to keep up to date on the latest hot results or to find information and images suitable for public talks.

Arctic Update

By Eric Steinbring (NRC)
(Cassiopeia – Winter 2014)

A bunch of publications related to astronomy from the High Arctic have appeared in recent months, with a few follow-on news stories, which I will list here for the interested reader. Together they range along the spectrum from the submillimetre through the optical. Apart from each requiring particular innovations to make them possible (and Canadian connections) these all seem to follow a common theme. Many were presented at the SPIE “Astronomical Telescopes + Instrumentation” meeting at Montreal last summer.

Two of those reports provide descriptions of 350 GHz to 1.4 THz prototype receivers for the Greenland Telescope (GLT) [1], an ASIAA/Harvard/SAO-collaboration, and their plans for deployment and operation at Summit, near the peak of the icecap [2]. This is among the driest, lowest opacity (and most isolated) astronomical sites on Earth. When installed and completed the GLT will combine with ALMA to form the northernmost leg of the Event Horizon Telescope (EHT) for very-long-baseline interferometry; there was a nice NewsHour piece on this [3]. The truly Earth-spanning scale of EHT is necessary for an ambitious goal to directly image the gravitational “shadow” of a supermassive black hole in M87 [4].

Several papers delivered at Montreal cover developments at Eureka: the wealth of experience gained by observers from UdeSherbrooke and UQAM, within the Canadian Network for the Detection of Atmospheric Change (CANDAC), operating precise star-photometer telescopes from sea level for many years [5]; new Arctic Wide-Field Camera survey results [6] and its evolution to the “Evryscope” [7]; campaign Slope Detection and Ranging (SloDAR) turbulence profile measurements obtained at the Polar Environment Atmospheric Research Laboratory (PEARL) [8]; and a detailed description of the UofT Dunlap Institute SloDAR instrument itself [9]. Arctic-hardened designs can yield excellent photometry with reduced scintillation due to the cold, highly-stratified atmosphere. An article in the latest SkyNews points to some of these findings [10].

Finally, a concept for a cluster of small optical telescopes allowing autonomous time-domain surveys from PEARL was presented at the “Adapting to the Atmosphere” conference in September at Durham, UK [11]. The unit telescopes, each with a swappable off-the-shelf sealed-tube assembly, were given the nickname “Ukaliq” which is Inuktitut for “Arctic Hare.” There is value in duplication. Other science could profit from this approach, but one particularly good fit for Ukaliq might be a quasar lensing study employing adaptive optics; best seeing is preserved by a compact design originally intended for site testing. Again, success can come by learning to take advantage of local conditions, highlighted in a recent Universe Today post [12].


[1] Grimes, P.K., Asada, K., Blundell, R., et al. 2014, Instrumentation for single-dish observations with the Greenland Telescope, Proc. SPIE, 9153

[2] Raffin, P., Algaba-Marcosa, J.C., Asada, K., et al. 2014, The Greenland Telescope (GLT): antenna status and future plans, Proc. SPIE, 9145

[3] Public Broadcasting System NewsHour, How a global network of telescopes may give us first glimpse of a black hole, 25 November 2014

[4] Lu, R.-S., Broderick, A.E., Baron, F., Monnier, J.D., Fish, V.L., Doeleman, S.S., & Pankratius, V. 2014, Imaging the Supermassive Black Hole Shadow and Jet Base of M87 with the Event Horizon Telescope, ApJ, 788, 120

[5] Ivanescu, L., Baibakov, K., O’Neill, N.T., Blanchet, J.-P., Blanchard, Y., Saha, A., Rietze, M., & Schulz, K.-H. 2014, Challenges in operating an Arctic telescope, Proc. SPIE, 9145

[6] Law, N.M., Carlberg, R., Fors, O., Steinbring, E., Ngan, W., Wulfken, P., Maire, J., & Sivanandam, S., 2014, New results from the first exoplanet survey in the Canadian High Arctic, SPIE Conf. Series, 9145

[7] Law, N.M., Fors, O., Wulfken, P., Ratzloff, J., & Kavanaugh, D. 2014, The Evryscope: the first full-sky gigapixel-scale telescope, SPIE Conf. Series, 9145

[8] Maire, J., Mieda, E., Steinbring, E., Murowinski, R., Graham, J.R., Carlberg, R., Wright, S.A., Law, N.M., Sivanandam, S. 2014, Optical turbulence profiling with SloDAR in the Canadian High Arctic, Proc. SPIE, 91453

[9] Mieda, E., Maire, J., Graham, J.R., Wright, S.A., & Moon, D.-S. 2014, SloDAR instrument for characterizing an Arctic site: overview of the experimental method, design, and performance, Proc. SPIE, 9145

[10] Semeniuk, I. Arctic Telescope, SkyNews, November/December 2014

[11] Steinbring, E., Leckie, B., & Murowinski, R. 2014, Ukaliq: Seeing Long-Term with Small, Precise Arctic Telescopes, IoPCS “Adapting to the Atmosphere”, Durham UK

[12] Majaess, D. Searching for Alien Worlds and Gravitational Lenses from the Arctic, Universe Today, 24 November 2014

Astrosat News

By John Hutchings (NRC)
(Cassiopeia – Winter 2014)

GALEX UV image of M33 with the UVIT field of view superposed

The GALEX UV image of M33 with the UVIT field of view superposed. UVIT will have several times better resolution, and a suite of filters and gratings for such studies.

The Astrosat observatory is a step closer to operations, with the delivery to ISRO of the qualified and calibrated UVIT telescopes. Integration of the five instruments into the spacecraft, and testing of their combined operations is beginning. This process will take at least 6 months before Astrosat is ready for launch. Operations and data processing pipeline software are in test, and early observations (commissioning and baseline science) are in planning. The UVIT delivery follows months of intense work by CSA, ComDev, IIA, and the instrument team, that included working visits to India by CSA’s Jason Rooney, detector expert Joe Postma, and myself.

On this schedule, early science will begin after commissioning in late 2015, and proposal time will begin six months later. The instrument teams are making detailed plans for guaranteed time observations, some of which are simultaneous monitoring at all wavelengths from hard X-ray to visible. The Astrosat website gives an overview of its capabilities. If you have ideas for early science, let me know, as it may be possible to work them into the UVIT observing plans.

Update from the Canadian Space Agency / Compte rendu de l’Agence spatial canadienne (ASC)

By/par Denis Laurin, Program Scientist, Space astronomy (CSA/ASC)
(Cassiopeia – Winter 2014)

La version française suit

CSA President

At the end of October, the Canadian government announced the nomination of Ret. General Walter Natynczyk as Deputy Minister of Veterans Affairs. Since Aug 2013, Natynczyk was President of the CSA. Even within this short time frame he contributed significantly to implement the recommendations from the Aerospace Review. This included the announcement of the Canadian Space Policy Framework, described in the March Cassiopeia issue, but worth repeating here since this policy sets guiding principles for future space projects, including space astronomy. On November 3, 2014, Luc Brûlé was named Interim President of the CSA. He has been Vice-President since April 2014.

Space Advisory Board

On November 19, the Canadian government announced the creation of the Space Advisory Board, which will provide expert advice to the government on Canada’s role and future in space. The board consists of experts from across the country, namely: Ret. General Walt Natynczyk, Dr. Mamdouh Shoukri, Terry Malley, Dr. Arlene Ponting, Lorne Trottier, Fred George, John Keating and Colonel Chris Hadfield.


WFIRST (Concept)

CSA will be studying possible contributions to NASA’s foremost Dark Energy (DE) mission WFIRST. A Canadian participation is aligned with the CASCA LRP priority in this area. In early December CSA awarded two contracts for concepts studies to evaluate possible Canadian hardware contributions to the WFIRST payloads. One study, led by COMDEV (Ottawa), concentrates on contributions to the Wide Filed Instrument; while the second study, led by ABB (Quebec), concentrates on contributions to the Coronagraph instrument. The studies have gathered excellent teams of engineers and scientists. In parallel, CSA issued a call for information (RFI) to form a pool of scientific experts and will invite an independent panel to help in the reviews of the results of the concept studies. CSA also continues to support Canadian participation to WFIRST Science Definition Team with Prof. Mike Hudson (University of Waterloo).

JWST (FGS and NIRISS instruments)

CSA is committed to the completion Phase D and support to end of commissioning. Successful testing of FGS and NIRISS was undertaken from June to Oct 2014 on the ISIM (CV2 or cryogenic test campaign 2). In the time between CV2 and CV3 tests (Dec – Jan) will allow some component change over (as planned) including the FGS and NIRISS detectors, grisms, NIRISS dual-wheel motors and an electronic board. This will fix previously identified issues with those components. CV3 test campaign is expected for summer fall 2015. Launch remains as scheduled Oct 2018.

SPICA (SAFARI instrument)

As mentioned in the March issue of Cassiopeia, the CSA supported studies at ABB and the University of Lethbridge continue, with projected completion in mid 2015. JAXA and ESA continue to evaluate their commitment to support the SPICA mission; science definition continues and instrument definition and a review of the concepts. SAFARI remains the key instrument and likely to be lead by SRON in future consideration in the Cosmic Vision M5 program, with projected launch near 2028.


The MOST satellite ceased operation on 9 September 2014. After almost 11 years of operations, MOST has produced over one hundred science publications and provided new insights into the behaviour of stars and exo-planets. Originally planned as a one-year project, MOST was extended annually due to the telescope’s continued successes. In the fall of 2013, the CSA conducted a mission extension review in cooperation with members of Canada’s astronomy community. The evaluation weighed the mission’s ongoing operational costs against its objectives and alternatives. The review led to the recommendation that this CSA mission be terminated, considering that MOST had already surpassed its objectives. The MOST contractor MSCI (Toronto) have taken ownership of the satellite and may still offer science investigation opportunities.

As described in the Cassiopeia of March 2014, CSA is supporting the development of the Advanced Science Archive for MOST data, lead by Vinothini Sangaralingam, Visiting Fellow (CSA / NSERC). This archive will make the MOST data “user friendly” and easily accessible by the scientific community. In collaboration with NRC CADC, UBC and the Université de Montréal, the work is progressing well and expected to be functional within another year.


Canada’s contribution is the Canadian ASTRO-H Metrology System (CAMS). Neptec Design Group (Ottawa) is the prime contractor. The CAMS units consist of two main components: a laser transmitter and optics (CAMS-LD) and the retro-reflective target (CAMS-T), to monitor the translation and rotation of the Hard X-ray telescope (HXT) extendable boom.

Although there have been issued in meeting original position measurement precision due to thermal effects, the effects can be calibrated and will be part of the position solution. On a very tight schedule, the flight units are to be delivered at the end of Dec 2014. Launch of ASTRO-H is planned for late 2015.


The NEOSSat project is in Phase E (commissioning, early operations) since April 1st 2014 (launched in Feb 2013). It is a joint project between CSA and Defense Research and Development Canada (DRDC). The mission has demonstrated High Earth Orbit Surveillance Survey (for DRDC) mission feasibility and tracked GEO and MEO satellites. Demonstrating requirements for asteroid search is in progress: NEOSSat demonstrated commanded pointing, arcsec stability, long exposures (up to 100 sec) and imaging tests with known asteroids. Image noise (fixed, interference, hot pixels) reduction is required and will be solved by a combination of onboard and ground processing. Promising results are currently obtained to meet the asteroid search objective at low solar elongation. Considerable efforts have been provided by CSA Sat Ops, University of Calgary (the Science Processing Operations Center for the asteroid mission), DRDC and MSCI.

Herschel (post ops)

CSA continues to support the post-operations (data reduction, scientific support) of HIFI (U. of Waterloo) to March 2016 and SPIRE (U. of Lethbridge, Blue Sky Spectroscopy) until March 2016.

Planck (post ops)

Support continues for the science team HFI (U. of Toronto), LFI, (UBC) until Aug 2015 data pipeline and analysis for the full mission maps and eventual first release of CMB polarization maps.

Meetings and events

JCSA (Joint CSA and CASCA consultation committee)

The JCSA met at the CASCA AGM in Quebec City and again in early December (by telecom). The next meeting is planned for the CASCA AGM in Hamilton. The current membership is: Brian McNamara (Chair, U. of Waterloo), JJ Kavelaars (NRC Herzberg), Peter Martin (U. of Toronto), Andrew Cumming (McGill U.), Gary Hinshaw (UBC) and Marcin Sawicki (St-Mary’s U.).

LRP MTR town hall

The CSA is supportive of the activities of the LRP Mid-Term Review. The priorities set in the LRP are critical for consideration and inclusion in the CSA space astronomy roadmap. CSA engages to participate and to contribute to the planned (Montreal) town hall discussions and exchange information in the spirit of effective coordination.

Technology Development

Under the STDP program, CSA continues to support the development of:

  • Work on assessment of large UV-enhanced CMOS arrays for wide field missions (e.g. CASTOR), COMDEV, expecting final report summer 2015.
  • Development for enhancement of EMCCD camera for space application is just completed, Nuvu Camera, Dec 2014.


Recently the CSA established a collaborative agreement with the University of Western Ontario (UWO) to enable the installation of an all-sky meteor monitoring camera. The camera is now operational and adds to the UWO existing All-Sky Camera Network.

Wishing everyone a happy Holiday Season.

Président de l’ASC

À la fin d’octobre, le gouvernement canadien a annoncé la nomination de Général (à la retraite) Walter Natynczyk sous-ministre aux Anciens Combattants. Depuis août 2013, Natynczyk était président de l’ASC. Même dans ce court laps de temps, il a largement contribué à mettre en œuvre les recommandations de l’examen aérospatial. Cela comprenait l’annonce du Cadre de la politique spatiale canadienne, décrit dans le numéro de mars de Cassiopeia, mais qui vaut la peine d’être répété ici, car cette politique établit des principes importants pour de futurs projets spatiaux, y compris l’astronomie spatiale. Le 3 novembre 2014, Luc Brûlé a été nommé Président intérimaire de l’ASC. Il a été vice-président depuis avril 2014.

Conseil consultatif de l’espace

Le 19 novembre, le gouvernement canadien a annoncé la création du Conseil consultatif de l’espace, qui fournira des conseils d’experts au gouvernement sur le rôle et l’avenir du Canada dans l’espace. Le conseil se compose d’experts de partout au pays: Général à la retraite Walt Natynczyk, le Dr Mamdouh Shoukri, Terry Malley, Arlene Ponting, Lorne Trottier, Fred George, John Keating et le colonel Chris Hadfield.


WFIRST (concept)

L’ASC va étudier des contributions possibles à la mission de la NASA WFIRST, dédié à l’étude de l’énergie sombre. Une participation canadienne s’aligne avec la priorité du plan à long terme de la CASCA dans ce domaine. Au début de décembre l’ASC a attribué deux contrats pour des études de concepts pour évaluer les contributions possibles canadiennes aux charges utiles de WFIRST. Une première étude, menée par COMDEV (Ottawa), se concentra sur les contributions à l’instrument de grand champs; tandis que la seconde étude, menée par ABB (Québec), se concentra sur les contributions à l’instrument du coronographe. Les études ont recueilli d’excellentes équipes d’ingénieurs et de scientifiques. En parallèle, l’ASC a lancé une demande d’informations (DI) pour former un groupe d’experts scientifiques et invitera un groupe indépendant pour aider dans la revue des résultats des études de concept. L’ASC continue également de soutenir la participation canadienne à l’équipe de définition scientifique de WFIRST avec le professeur Mike Hudson (université de Waterloo).

JWST (les instruments FGS et NIRISS)

L’ASC est engagée à l’achèvement de la phase D et d’un soutien jusqu’à la fin de la mise en service. Les tests réussis du FGS et de NIRISS ont été entrepris de juin à octobre 2014 sur l’ISIM (CV2 ou série de tests cryogéniques 2). L’espace de temps entre les tests de CV2 et CV3 (décembre-janvier) permettra un changement de composantes (comme prévu), y compris les détecteurs FGS et NIRISS, grisms, moteurs du système NIRISS et une carte électronique. Cela va corriger les problèmes identifiés précédemment avec ces composants. Une campagne d’essais en CV3 est prévue de l’été à l’automne 2015. Le lancement reste comme prévu en octobre 2018.

SPICA (l’instrument SAFARI)

Comme mentionné dans le numéro de mars de Cassiopeia, l’ASC continue d’appuyer des études chez ABB et à l’université de Lethbridge, prévu de se conclure vers la mi-2015. JAXA et l’ESA continuent à évaluer leur engagement à soutenir la mission SPICA, la définition de la science continue ainsi que la définition de l’instrument et une étude des concepts. SAFARI demeure l’instrument clé et sera probablement dirigé par SRON et en considération dans le programme (ESA) Cosmic Vision M5, avec le lancement prévu près de 2028.


Le satellite MOST a cessé ses opérations le 9 septembre 2014. Après près de 11 années d’exploitation, MOST a produit plus d’une centaine de publications scientifiques et a offert de nouvelles connaissances sur le comportement des étoiles et des exoplanètes. Initialement prévu comme un projet d’un an, MOST a été prolongé chaque année en raison de son succès. À l’automne 2013, l’ASC a effectué un examen de prolongation de la mission en coopération avec les membres de la communauté astronomique. L’évaluation a pesé les coûts opérationnels de la mission et l’encontre de ses objectifs et considéré des alternatives. L’examen a conduit à la recommandation que cette mission de l’ASC soit retirée, considérant que ses objectifs avaient déjà été longuement dépassés. L’entreprise MSCI (Toronto) a pris possession du satellite et peut encore offrir des possibilités d’investigation scientifiques.

Comme décrit dans le Cassiopeia de mars 2014, l’ASC soutient le développement d’une archive des données réduites de MOST, cet effort est dirigé par Dr Vinothini Sangaralingam, chercheure invitée (l’ASC/CRSNG). Ces archives offriront des données conviviales et plus facilement accessibles par la communauté scientifique. En collaboration avec CADC CNRC, UBC et l’université de Montréal, le travail progresse bien et devrait être fonctionnel d’ici un an.

ASTRO-H (l’instrument CAMS)

La contribution du Canada est le système canadien de métrologie ou Canadian ASTRO-H Metrology System (CAMS). Neptec Design Group (Ottawa) est le maître d’œuvre. Les unités de CAMS sont constituées de deux composantes principales : un émetteur laser et de l’optique (CAMS-LD) et la cible rétro-réfléchissante (CAMS-T) pour mesurer le déplacement et la rotation du télescope à rayons-X durs (HXT) à l’extrémité d’une longue extension.

Bien qu’il y ait été difficile à répondre à la précision requise de mesure de position à cause d’effets thermiques, ces effets peuvent être calibrés et feront partie de la solution de position. Sur un calendrier très serré, les unités de vol doivent être livrés et la fin de décembre 2014. Le lancement d’ASTRO-H est prévu pour la fin 2015.


Le projet NEOSSat est en phase E (mise en service, début des opérations) depuis le 1er avril 2014 (lancé en février 2013). C’est un projet conjoint entre l’ASC et de Recherche et développement pour la défense Canada (RDDC). La mission a démontré la surveillance d’objets en hautes orbites, suivis satellites GEO et MEO. La démonstration des exigences pour la recherche astéroïde demeure en cours: NEOSSat a démontré un pointage commandé, avec une stabilité de seconde d’arc, de longues expositions (jusqu’à 100 secondes) et des tests d’imagerie avec des astéroïdes connus. La réduction de bruit de l’image (fixe, interférences, et les pixels chauds) est requise et sera effectuée par une combinaison de traitement à bord et au sol. Des résultats prometteurs sont actuellement obtenus pour atteindre l’objectif de recherche d’astéroïdes à faible angle du soleil. Des efforts considérables ont été fournis par l’ASC (opérations satellitaires), l’université de Calgary (le centre des opérations de traitement de la science pour la mission), RDDC et MSCI.

Herschel (suivi des opérations)

L’ASC continue d’appuyer les réductions des données et un soutien scientifique de HIFI (université de Waterloo) à mars 2016 anis que SPIRE (université de Lethbridge, Blue Sky Spectroscopy) jusqu’en mars 2016.

Planck (suivi des opérations)

Le soutien se poursuit pour l’équipe scientifique de HFI (université de Toronto), LFI, (UBC) jusqu’en août 2015 œuvrant sur le pipeline de données et d’analyses pour les cartes complètes et l’éventuelle première version de cartes du fonds cosmique avec polarisation.

Réunions et événements

JCSA (Comité consultatif conjoint de l’ASC et CASCA)

Le comité JCSA c’est rencontré lors du congrès annuel de la CASCA à Québec et à nouveau au début de décembre (par téléconférence). La prochaine réunion est prévue au congrès annuel de la CASCA à Hamilton. La composition du comité actuelle est: Brian McNamara (président, u. de Waterloo), JJ Kavelaars (Herzberg), Peter Martin (u. de Toronto), Andrew Cumming (u. McGill), Gary Hinshaw (UBC) et Marcin Sawicki (u. de St-Mary’s).

Plan à long terme – revue à mi-parcours

Le L’ASC appuie les activités de l’examen à mi-parcours du plan à long terme. Les priorités fixées dans le plan sont essentielles pour considération et inclusion dans la feuille de route l’ASC en astronomie spatiale. L’ASC s’engage à participer et à contribuer à la réunion (prévue à Montréal) pour l’échange d’informations dans l’esprit d’une coordination efficace.

Développement technologique

Dans le cadre du programme de PDTS, l’ASC continue de soutenir le développement de:

  • L’évaluation des grands détecteurs CMOS améliorés en UV pour des missions futures (par exemple CASTOR), avec COMDEV; un rapport final est prévu à l’été 2015.
  • Développement pour l’amélioration de la caméra avec EMCCD pour applications spatiales vient de se terminer, Nuvu Caméra, décembre 2014.


Récemment, le l’ASC a établi une entente de collaboration avec l’université de Western Ontario (UWO) permettant l’installation d’une caméra de surveillance de météores. La caméra est maintenant opérationnelle et ajoute au réseau existant de l’UWO du «All-Sky Camera Network».

Souhaitant à tous une heureuse période des Fêtes.

Gemini News – Nouvelles de Gemini

By/par Stéphanie Côté, Tim Davidge and John Blakeslee
(Cassiopeia – Winter 2014)

La version française suit

Fast Turnaround Program starting soon

A problem with the conventional semester-driven time allocation process is that there can be a substantial delay between having a good idea for an observing program and getting the observations executed on the telescope. The FTP is designed to reduce the time between the birth of an idea and acquiring the data. . It is expected that the first call for proposals will be in early January 2015, with a deadline of the end of that month. Accepted programs will be active during March-May 2015. About three nights per month will be dedicated to the FP programs.

An obvious logistical problem is having a TAC that is willing to review proposals on a timely basis on a month-by-month schedule. A novel aspect of the FTP is that the proposals will be peer-reviewed by those that apply for this time on any given month. The CGO has been leading this effort by developing the necessary scripts, and a trial run was conducted in April 2014 with Canadian PIs/Cos refereeing each others proposals. The ranking of the proposals obtained through this process correlated well with the rankings from the regular CanTAC. This first trial received extremely favorable feedback from the Canadian users. The FTP will enable Canadian PIs to access targets of interest before the competition.

New Hamamatsu CCDs

New Red-Sensitive CCDs manufactured by Hamamatsu Photonics were installed in the GMOS-South instrument in June 2014. These detectors have greatly enhanced sensitivity as compared to the previous ones, especially at the red end. The orientation of the CCDs has not changed, and GMOS-S continues to support both IFU observations and Nod+Shuffle observing mode. The fringing is greatly reduced for the new CCDs, but the cosmic ray hit rate is higher. As of this writing, data taken with the new Hamamatsu CCDs must be processed with a special “patch” release of the Gemini IRAF package, which should not be used for GMOS-N data or GMOS-S data taken with the previous CCDs. For more information, see:

News on future capabilities

This past September Gemini launched the Gemini Instrumentation Feasibility Study (`GIFS’) to develop ideas for the next facility instrument. The intent of this process is to foster teams of astronomers and engineers that will generate scientifically-driven capabilities that can be realized within the cost limitations of the instrumentation budget. The competition has a rapid time line – the Request for Proposals was issued on September 19 and proposals are due on December 15. Contracts will likely be assigned to multiple teams in an effort to explore different concepts. The selection of teams will be made by January, and study reports are due in September 2015.

High resolution spectroscopy at visible wavelengths is a capability of interest to Canadian astronomers that has been missing from Gemini. However, both sites will soon have high resolution spectrographic capabilities. On Gemini North a fiber feed has been installed that links Gemini with the ESPaDOnS spectrograph at CFHT. The Gemini Remote Access to CFHT ESPaDOnS Spectrograph (`GRACES’) was developed at HIA Herzberg in Victoria, and had a successful commissioning run earlier this year. On-sky tests reveal total system throughput longward of 5000 Angstroms that is competitive with high resolution spectrographs on other 8 – 10 meter telescopes. It is hoped that this capability will be made available for general use in 2015.

Work is also progressing on the Gemini High resolution Optical specTrograph (`GHOST’). This is the next new instrument, and plans are for it to be delivered to Gemini in 2017. Much of the work on GHOST is being done at NRC Herzberg in Victoria. At the October 2014 meeting of the Science and Technology Advisory Committee (SRAC) it was decided that this instrument will go to Gemini South.

Gemini Science and Users Meeting 2015

Registration is now open for the triennial Gemini Science and Users’ Meeting, to be held in Toronto, 14-18 June 2015. The theme of the meeting is “The Future & Science of Gemini Observatory.” The Abstract and Early Registration (reduced fee) deadlines are both March 4, 2015. For further information on the program, registration, abstract submission, and the venue, please see:

Le Programme «Fast Turnaround» débute bientôt

Un problème avec le processus classique d’attribution du temps par semestres est qu’il peut y avoir un délai important entre une bonne idée pour un programme d’observation et l’obtention des observations au télescope. Le FTP est conçu pour réduire le temps entre la naissance d’une idée et l’acquisition des données. Il est prévu que le premier appel de demandes sera au début de janvier 2015, avec une date limite à la fin du mois. Les programmes acceptés seront actifs au cours de mars-mai 2015. Environ trois nuits par mois seront consacrées aux programmes de FT.

Un problème logistique évident est d’avoir un TAC qui est prêt à examiner les demandes chaque mois. Un nouvel aspect du FTP est que les demandes seront évaluées par les pairs, c’est-a-dire par ceux/celles qui ont appliqué pour ce mois donné. Le CGO a dirigé cet effort en développant les scripts nécessaires, et un essai a été réalisé en avril 2014 avec des PIs/Co-I canadiens passant en revue les demandes des uns et des autres. Le classement des demandes obtenues par ce processus est bien corrélé avec les classements du CanTAC régulier. Ce premier essai a reçu des commentaires extrêmement favorables des utilisateurs canadiens. Le FTP permettra aux astronomes canadiens d’accéder à des cibles d’intérêt avant la compétition.

Nouveaux CCDs Hamamatsu

De nouveaux CCD plus sensibles dans le rouge fabriqués par Hamamatsu Photonics ont été installés dans l’instrument GMOS-Sud en Juin 2014. Ces détecteurs ont grandement amélioré la sensibilité par rapport aux précédents, surtout vers le rouge. L’orientation des détecteurs CCD n’a pas changé, et GMOS-S continue à soutenir les observations en mode IFU et Nod +Shuffle. Le fringing est considérablement réduit pour ces nouveaux détecteurs CCD, mais le taux de rayons cosmiques est plus élevé. A ce jour, les données prises avec les nouveaux détecteurs CCD Hamamatsu doivent être traitées avec un “patch” spéciale de la version du progiciel Gemini IRAF (seulement pour les Hamamatsu, pas pour les données GMOS-N ou GMOS-S prises avec les détecteurs CCD précédentes). Pour plus d’informations, voir:

Nouvelles des futurs instruments

En septembre dernier Gemini a lancé une étude de Faisabilité d’Instrumentation Gemini (« GIFS ») pour développer des idées pour le prochain instrument. Le but de ce processus est de favoriser la création d’ équipes d’astronomes et d’ingénieurs qui généreront un instrument choisi pour ses possibilités scientifiques et qui puisse être réalisé dans les limites des coûts permis par le budget. Cet appel a un calendrier rapide – la requête de propositions a été publiée le 19 septembre et les propositions sont dus le 15 décembre. Plusieurs contrats seront probablement distribués à différentes équipes dans un effort à pousser l‘exploration de différents concepts. La sélection des équipes sera faite en janvier, et les rapports des diverses études seront dus en septembre 2015.

La spectroscopie haute résolution dans le visible est une fonctionnalité intéressante pour les astronomes canadiens mais jusqu’à maintenant n’a pas été disponible à Gemini. Dorénavant les deux sites auront bientôt des capacités spectroscopiques haute résolution. A Gemini Nord un réseau de fibres a été installé qui relie Gemini avec le spectrographe ESPaDOnS au TCFH. Le Spectrographe Gemini pour accès à distance d’ESPaDOnS au TCFH (“GRACES») a été développé au CNRC-Herzberg à Victoria, et a eu une mise en service réussie plus tôt cette année. Les tests sur le ciel ont révélé un débit total du système à partir de 500 nm qui est compétitif avec les spectrographes de haute résolution sur les autres télescopes de 8-10 mètres. Il est à espérer que cette capacité sera disponible pour une utilisation générale en 2015.

Les travaux progressent aussi sur le spectrographe optique de haute résolution de Gemini (« GHOST »). Ce sera le prochain nouvel instrument, et les plans sont de le livrer à Gemini en 2017. Une grande partie des travaux sur GHOST est faite au CNRC- Herzberg à Victoria. Lors de la réunion d’octobre 2014 du Comité consultatif des sciences et de la technologie (STAC) il a été décidé que cet instrument ira à Gemini -Sud.

Réunion de Science et des Utilisateurs Gemini 2015

L’inscription est maintenant ouverte pour la réunion triennale de science et des utilisateurs Gemini, qui se tiendra à Toronto les 14-18 juin 2015. Le thème de la réunion est «L’avenir et la science de l’Observatoire Gemini”. La date limite pour soumettre un résumé et pour une inscription précoce (à tarif réduit) est le 4 mars 2015. Pour de plus amples renseignements sur le programme, l’enregistrement, la soumission des résumés et le lieu, veuillez s’il vous plaît consulter:

Herschel-HIFI News

Submitted by Sylvie Beaulieu, Herschel-HIFI Instrument Support Scientist
(Cassiopeia – Winter 2014)

Feature story – Detection of an Anomalous Hot Gas Component in a Low Mass Star-Forming Region

By Andy Pon (2014 Plaskett medal recipient; Leeds University)

Using HIFI on Herschel, the CO (5-4) and CO (6-5) transitions were observed towards the centre of Perseus B1-E5, a starless condensation in the Perseus molecular cloud, which is a nearby low mass star-forming region. HIFI obtained strong detections of two separate velocity components in both transitions.

Photodissociation region (PDR) models from the Kaufman et al. (1996), KOSMA-tau, and Meudon codes were compared to a spectral energy diagram composed of the HIFI data and archival data of lower J CO lines. The PDR models were able to account for the emission in the CO (1-0), (3-2) and (5-4) lines, but every model that fit these lower lines significantly underpredicted the integrated intensity of the (6-5) line. This inability
of the PDR models to consistently account for the CO (6-5) emission implies that there is a warm gas component within B1-E5 that is not included in standard PDR models.

Given the lack of any protostars or protostellar outflows in the vicinity of B1-E5, the most plausible source of this warm gas is the dissipation of turbulence in low velocity shocks. The observed emission is consistent with the turbulent energy dissipating on a timescale a factor of three larger than the turbulent crossing time. Only 0.15% of the gas within B1-E5 would need to be shock heated by 3 km/s shocks to explain the observed CO (6-5) integrated intensities.

This work is described in more detail in Pon et al. (2014, MNRAS, 445, 1508).

The lines show the best fitting KOSMA-tau models to the observed integrated intensity  ratios for the two detected components. Note that the models fail to reproduce the large  CO (6-5) intensities.

The lines show the best fitting KOSMA-tau models to the observed integrated intensity
ratios for the two detected components. Note that the models fail to reproduce the large
CO (6-5) intensities.

Herschel Interactive Processing Environment (HIPE)

HIPE 12.1 is the current released version. Please visit ‘What’s New in HIPE‘ for the latest changes in this release. Additional information can be found in the ‘HIFI Instrument and Calibration‘ webpage.

Note that HIPE 13 is currenty being tested and will be available in the Spring.

Conferences, workshops and webinars related to Herschel

Nouvelles du CNRC Herzberg – NRC Herzberg News

By/par Dennis Crabtree (NRC-Herzberg)
with contributions from/avec l’apport de Les Saddlemyer, David Schade, Chris Willott

(Cassiopeia – Winter 2014)

The English version follows

Rapport Cassiopeia du Bulletin de CNRC Herzberg

Les rubriques qui suivent reviendront dans chaque numéro du bulletin et ont pour but de tenir les astronomes canadiens au courant des activités de CNRC Herzberg.

Les commentaires des astronomes sur la manière dont CNRC Herzberg accomplit sa mission, c’est-à-dire «assurer le fonctionnement et la gestion des observatoires astronomiques mis sur pied ou exploités par l’État canadien» (Loi sur le CNRC), sont les bienvenus.

Comité canadien d’attribution du temps d’observation (CanTAC)

Les membres du CanTAC se sont réunis en octobre-novembre afin d’examiner les projets relatifs aux observatoires CFHT et Gemini pour le semestre 2015A et établir un classement. Il s’agit du deuxième semestre « A » durant lequel le CanTAC se réunit virtuellement en recourant au logiciel WebEx. Cette approche a été retenue pour les rencontres automnales, les membres du Comité éprouvant plus de mal à se déplacer les semestres où ils enseignent.

Geoff Clayton (LSI) a été nommé super président du CanTAC pour la réunion, le siège de président galactique étant occupé par David Lafrenière (U de M) et celui de présidente extragalactique, par Kristine Spekkens (RMC). Dennis Crabtree continue de servir de secrétaire technique au Comité, dont la composition est la suivante:

Groupe galactique Groupe extragalactique
Geoff Clayton (LSU) Arif Babul (Victoria)
Andrew Cumming (McGill) Peter Capak (Caltech)
Laurent Drissen (Laval) Scott Chapman (Dalhousie)
David Lafrenière (Montréal) Alan McConnachie (NRC Herzberg)
Stanimir Metchev (Western) Kristine Spekkens (RMC)
Leslie Rogers (Caltech) Chris Willott (NRC Herzberg)
Ingrid Stairs (UBC)

Le CanTAC a reçu 38 propositions pour le CFHT (24 du groupe galactique et 14 du groupe extragalactique) ainsi que 45 pour Gemini (25 du groupe galactique et 20 du groupe extragalactique) en prévision du semestre 2015A. Globalement, ces projets représentent 648 heures d’observation au CFHT et 554 aux observatoires Gemini. Les taux d’adhésion étaient de 2,88 pour le CFHT, de 2,28 pour Gemini Nord et de 2,07 pour Gemini Sud.

Astronomie optique


En association avec le consortium universitaire CANFAR (CP, Chris Pritchet à l’UVIC), le Centre canadien de données astronomiques (CCDA) fournit depuis 2009 les données et les services hébergés sur l’infrastructure de Calcul Canada. Les principaux services de CANFAR consistent en la consultation des données, le stockage de ces dernières sous la gestion de l’utilisateur (façon Dropbox) et le traitement en nuage. Tous les astronomes canadiens et leurs collaborateurs de l’étranger peuvent se prévaloir de ces services.

CANFAR (Canadian Advanced Network for Astronomy Research – réseau évolué de la recherche astronomique au Canada) traverse une période aussi occupée que palpitante. En effet, le consortium a récemment soumis une proposition à Calcul Canada dans le cadre de son concours des plateformes et des portails de recherche, afin qu’on lui alloue des ressources pour trois ans. La demande devrait être sanctionnée en décembre 2014. Le 1er décembre 2014, la plateforme de traitement en nuage de CANFAR, à l’Université de Victoria, a migré de Nimbus à OpenStack. Dans l’immédiat, cela signifie que les utilisateurs devront apprendre à composer avec un nouvel environnement pour gérer leurs machines virtuelles et réaliser leurs calculs en nuage, cependant le service s’en trouvera rehaussé à plus longue échéance.

CANFAR et le CCDA collaborent avec Calcul Canada pour que les données astronomiques et les services de calcul soient transférés à ce dernier d’ici trois ans. L’activité s’inscrit dans les améliorations majeures que l’organisme apporte à ses installations en vue de faciliter les recherches faisant un usage massif des données.

CANFAR invite tous les astronomes du Canada à recourir à ses services pour combler les besoins informatiques de leurs petits projets de recherche et des travaux plus ambitieux d’analyse du ciel s’appuyant sur une masse de données volumineuse.

Astronomie spatiale

Le réseau de repérage du JWST après installation du miroir et déploiement de la structure de soutien du miroir auxiliaire au Goddard Space Flight Center. (NASA)

Le réseau de repérage du JWST après installation du miroir et déploiement de la structure de soutien du miroir auxiliaire au Goddard Space Flight Center. (NASA)

La construction du télescope James Webb (JWST) va bon train. Une grande partie de l’équipement de vol a été fabriquée et l’année qui vient verra l’intégration du matériel et les essais s’accélérer. Les quatre instruments scientifiques ont été réunis pour former un seul module en 2014, lequel a fait l’objet de trois mois d’essais intensifs dans le caisson cryogénique sous vide du Goddard Space Flight Center. Le réseau de repérage est une version technique du télescope. À l’automne 2014, on y a recouru pour vérifier les procédures d’installation du miroir à l’aide des miroirs de rechange du vol et pour tester le déploiement de la structure de soutien du miroir auxiliaire (voir l’illustration). Le réseau sera expédié au Johnson Space Center de Houston en 2015, où il servira aux essais qui prépareront le caisson sous vide avant l’arrivée du télescope spatial proprement dit.

Le double instrument (FGS/NIRISS) fourni par la CSA qui conférera à l’observatoire ses puissantes capacités scientifiques et la finesse de son guidage a très bien fonctionné lors des récents essais cryogéniques sous vide. Les activités s’intensifient maintenant chez COM DEV, principal maître d’œuvre, au sein de l’équipe du chercheur principal René Doyon, à l’Université de Montréal, et à la CSA, car il faut préparer le matériel de remplacement en vue de la substitution qui aura lieu en décembre et en janvier. Ainsi, il faudra remplacer le détecteur dans le proche infrarouge par un neuf, de même que les réseaux prismés qui serviront à étudier le transit des exoplanètes par spectroscopie et spectroscopie à champ large sans fente, les moteurs de l’unité à double carrousel et les dispositifs de commande électroniques. Ensuite, on intégrera de nouveau le FGS/NIRISS au module instrumental dont les ultimes essais cryogéniques sous vide sont prévus à l’été 2015.

L’équipe scientifique du FGS/NIRISS poursuit son travail avec le personnel du Science and Operations Center du Space Telescope Science Institute. Les logiciels sont planifiés et élaborés dans divers secteurs, dont la planification des projets, les opérations, l’étalonnage, le traitement des données en pipeline et la mise en service. Les données expérimentales du détecteur dans le proche infrarouge de substitution font l’objet d’analyses et on s’attache particulièrement aux caractéristiques fines de l’instrument qui revêtiront tant d’importance au niveau de l’analyse et de l’étalonnage quand le JWST se mettra à observer quelques-unes des étoiles les plus éclatantes (pour déceler le transit des exoplanètes) ou les plus ténues (pour détecter les galaxies très décalées dans le rouge) du firmament.

Le lancement du JWST devrait avoir lieu en 2018 sur une fusée Ariane V.

Technologie astronomique


SPIRou est un spectrophotomètre qui fonctionne dans la bande de 0,98 à 2,35 microns du proche infrarouge. Il a été conçu pour être déployé au télescope Canada-France-Hawaï (CFHT) et permettra la détection ainsi que la caractérisation des planètes de type terrestre dans la zone habitable des étoiles peu massives. Grâce à lui, les astronomes pourront étudier les champs magnétiques et la naissance des planètes.

Ce projet coopératif piloté par l’IRAP français fait appel à quatre instituts de l’Hexagone (LATT, UMS/OMP, LAOG et OHP), à un institut taïwanais (ASIAA) et à trois partenaires canadiens (U de M, UL et CNRC Herzberg).

Afin de satisfaire aux contraintes scientifiques, le SPIRou consistera en un spectrographe à haut débit et aux éléments optomécaniques ultrastables, alimenté par fibre optique. Une fois stabilisées, les conditions thermiques dans le cryostat varieront de moins de un ou deux millikelvins.

SPIRou a réussi avec succès l’examen final de sa conception au printemps 2014 et a entamé la phase de construction. CNRC Herzberg fabriquera le cryostat qui abritera les éléments optiques du spectrographe (France), le détecteur et l’assemblage photographique (U de M et UL) de même que le montage de fibres optiques/éminceur de signal situé à l’entrée (France). Pour stabiliser les conditions thermiques autour d’un à deux millikelvins, on a incorporé à l’appareil un système de commande de précision qui atténuera considérablement les écarts de température éventuels du télescope.

Cryostat de SPIRou

Cryostat de SPIRou

La construction, l’assemblage et la vérification du système optomécanique du cryostat ainsi que du système de commande thermique seront terminés au premier trimestre 2016, moment auquel ils seront envoyés à Toulouse (France) en vue d’être intégrés aux autres composants du SPIRou.

La figure illustre le cryostat, qui mesure environ 1,7 m de diamètre. Ouvert, l’assemblage a une longueur de 5,9 m. La coquille du cryostat pèse deux tonnes à elle seule; une fois terminé, le spectrographe aura une masse supérieure à 3,5 tonnes.

The NRC Herzberg News Cassiopeia Report

These reports will appear in each issue of Cassiopeia with the goal of informing the Canadian astronomical community on the activities at NRC Herzberg.

Feedback is welcome from community members about how NRC Herzberg is doing in fulfilling our mandate to “operate and administer any astronomical observatories established or maintained by the Government of Canada” (NRC Act).

Canadian Time Allocation Committee (CanTAC)

CanTAC met in October/November to discuss and rank CFHT and Gemini proposals for semester 2015A. This is the second “A” semester where CanTAC has met virtually using the WebEx virtual presence software. This approach is used for the Fall meetings as it is more difficult for CanTAC members to travel during the teaching semester.

The CanTAC SuperChair for this meeting was Geoff Clayton (LSU), while the Galactic panel chair was David Lafrenière (U de M) and the Extragalactic panel chair was Kristine Spekkens (RMC). Dennis Crabtree continues to serve as the technical secretary for CanTAC. CanTAC members are:

Galactique Extragalactique
Geoff Clayton (LSU) Arif Babul (Victoria)
Andrew Cumming (McGill) Peter Capak (Caltech)
Laurent Drissen (Laval) Scott Chapman (Dalhousie)
David Lafrenière (Montréal) Alan McConnachie (NRC Herzberg)
Stanimir Metchev (Western) Kristine Spekkens (RMC)
Leslie Rogers (Caltech) Chris Willott (NRC Herzberg)
Ingrid Stairs (UBC)

For Semester 2015A CanTAC received 38 CFHT proposals (24 Galactic and 14 Extragalactic) and 45 Gemini proposals (25 Galactic and 20 Extragalactic). There was a total of 648 hours requested on CFHT and 554 hours on Gemini. The subscription rates were 2.88 for CFHT, 2.28 for Gemini North and 2.07 for Gemini South.

Optical Astronomy


The Canadian Astronomy Data Centre (CADC) has been working since 2009 in a partnership with the university-led CANFAR consortium (PI Chris Pritchet at UVIC) to deliver data and services hosted on Compute Canada infrastructure. The core services offered by CANFAR are data access, user-managed storage (similar to DropBox), and cloud processing. These services are available to all Canadian astronomers and their international collaborators.

This is a very busy and exciting time for CANFAR (Canadian Advanced Network for Astronomy Research). We have recently proposed to Compute Canada (CC) under the Research Platforms and Portals competition which allows us to request resource allocations for 3 years. We expect approval in December 2014. Our cloud processing environment migrated on December 1, 2014 from Nimbus to OpenStack at UVIC. In the short terms this means learning a new VM management and cloud processing environment for users but in the long-term this will result in a superior service.

CANFAR and CADC are working with Compute Canada to finish the transition of astronomy data and computing services to Compute Canada over the next 3 years. This will be part of major enhancement of Compute Canada’s capacity to support data-intensive research.
CANFAR invites all Canadian astronomers to use CANFAR services to support their research computing needs for small projects and major data-intensive survey projects.

Space Astronomy

The JWST pathfinder after mirror installation and secondary mirror support structure deployment at Goddard Space Flight Center.  (NASA)

The JWST pathfinder after mirror installation and secondary mirror support structure deployment at Goddard Space Flight Center. (NASA)

Construction of the James Webb Space Telescope (JWST) continues to make good progress. A large fraction of the flight hardware has been manufactured and the next few years see a ramp-up in integration and testing. During 2014 all four science instruments have been integrated into a single instrument module that has undergone an extensive 3 month test campaign in the cryo-vacuum chamber at Goddard Space Flight Center. The pathfinder is an engineering version of the telescope. In fall 2014 it has been used to validate procedures for mirror installation with flight-spare mirrors and to test deployment of the secondary mirror support structure (see image). In 2015 it will be shipped to Johnson Space Center in Houston where it will be used in testing to prepare the vacuum chamber for the arrival of the flight telescope.

The CSA-provided dual instrument FGS/NIRISS that provides observatory fine guidance and powerful science capabilities performed very well during the recent cryo-vacuum test. There is now a large amount of activity at the prime contractor COM DEV, in PI René Doyon’s group at the Université de Montréal and at CSA to prepare replacement hardware for exchange occurring in December and January. Replacement activities involve new near-infrared detector arrays, grisms for exoplanet transit spectroscopy and wide-field slitless spectroscopy, motors for the dual wheel unit and control electronics. FGS/NIRISS will then be re-integrated into the instrument module that undergoes its final cryo-test in the summer of 2015.

The FGS/NIRISS science team continue to work with staff at the Science & Operations Center at the Space Telescope Science Institute. Planning work and software development is being carried out in areas of proposal planning, operations, calibration, data pipeline processing and commissioning. Analysis is underway of replacement near-infrared detector test data, with particular focus on subtle detector characteristics that are important to understand and calibrate as JWST pushes to observe some of the brightest (for exoplanet transits) and faintest (for high-redshift galaxies) targets in the sky.
JWST is scheduled for launch on an Ariane V rocket in 2018.

Astronomy Technology


SPIRou is a spectropolarimeter operating in the NIR band from 0.98 to 2.35 microns designed to be deployed at the Canada-France-Hawaii Telescope (CFHT). Targeted at enabling detection and characterization of Earth-like planets in the habitable zone of low-mass stars, it will enable astronomers to investigate magnetic fields and planet formation.
SPIRou is a collaboration led by IRAP in France, and includes four institutes in France (LATT, UMS/OMP, LAOG and OHP), Taiwan (ASIAA), three Canadian partners (Université de Montréal, Université Laval and NRC Herzberg).

In order to meet the science requirements, SPIRou is a fibre-fed spectrograph with high throughput and ultra-stable opto-mechanics. Once stable, the thermal environment within the cryostat will be constant to within 1 to 2 milliKelvin.

SPIRou successfully completed its final design review in the spring of 2014, and is in the build-phase now. NRC Herzberg is producing the spectrograph cryostat, which houses all the spectrograph optics (France), the detector and camera assembly (U de M and U Laval) and the entrance fibre/slicer assembly (France). In order to maintain the 1 to 2 milliKelvin thermal stability, there is a precision thermal control system incorporated to significantly attenuate any thermal changes at the telescope.

SPIRou cryostat

SPIRou cryostat

Construction, assembly and verification of the cryostat opto-mechanics and thermal control will be complete in Q1 2016, at which time it will be transported to Toulouse, France for final integration with the other SPIRou components.

A rendering of the cryostat is shown in the Figure below. The diameter of the cryostat is about 1.7m, while open the assembly is 5.9m long. The cryostat shell alone weighs 2 tonnes; complete the spectrograph weighs in excess of 3.5 tonnes.

A Final Dispatch from the JCMT

By Gary Davis, Director JCMT
(Cassiopeia – Winter 2014)

Momentous changes are upon us: before the next Cassiopeia is issued, the James Clerk Maxwell Telescope will change hands. The good news is that the JCMT will continue to operate under new East Asian management, potentially for many years, and will continue to deliver the innovative and high-impact science that has been its hallmark to date. Given the decision of the historical UK-Canada-Netherlands partnership to withdraw its support for the observatory, this is the best outcome that could possibly have been achieved.

The dissolution of the partnership began with the withdrawal of the Dutch agency NWO in March 2013. NRC Canada then withdrew on 30th September 2014, and I would like to record here my thanks to NRC and the Canadian community for their financial, technical, scientific and personnel contributions to the JCMT over more than 27 years. The JCMT has unquestionably been a stronger and more successful telescope over this period because of Canada’s participation. It is extremely gratifying to observe that Canada is now a partner of choice in submillimetre astronomy missions and experiments – Herschel, ALMA, BLAST and ACT to name a few, and potentially CCAT and SPICA in the future – and this is a direct consequence of the experience gained with the JCMT.

Confronted with these decisions from the Netherlands and Canada, the UK funding agency STFC decided in May 2012 that it could no longer support the operation of the JCMT beyond the date of Canadian withdrawal. It is a tautology to say that this was a profoundly disappointing decision for everyone associated with the observatory. In retrospect, however, it is a clear consequence of the funding pressures occasioned by mega-projects: although the details in the two cases are different, the withdrawals of both the Netherlands and Canada were driven by their commitments to ALMA.

My mission since then has been to find a new entity to take over the operation of the telescope. In previous issues of Cassiopeia I reported that an Announcement of Opportunity had been issued in June 2013, and that four Expressions of Interest had been received: one each from the UK and Canadian communities, one from Purple Mountain Observatory, and one from the East Asian Core Observatories Association (EACOA), an umbrella organisation representing astronomy research institutes in Taiwan, China, South Korea and Japan. It is particularly gratifying to me, as Director of the observatory, to note that the user communities in the UK and Canada are determined to retain their access to the JCMT: in Canada, this effort is being led by Christine Wilson. Following a workshop in Vancouver in December 2013, these interests were eventually consolidated into a single proposal, which was accepted by the University of Hawaii (UH) in June 2014. The actual transfer is now firmly scheduled to take place at midnight on 31st January 2015: the legal ownership of the facility will transfer from STFC to UH, and the telescope will be operated by EAO in partnership with the UK and Canadian communities. EAO is the East Asian Observatory, a non-profit corporation set up by EACOA in the State of Hawaii. All of the legal arrangements for this transaction are now being put in place. The transfer of the UK’s two world-leading telescopes (UKIRT and JCMT) to new management is, as far as I am aware, unprecedented in the history of observational astronomy.

In parallel with the legal arrangements, we have been working with EAO to ensure as far as possible a seamless transition of observatory operations. For example, the Canadian Astronomy Data Centre (CADC) will continue to host the JCMT Science Archive for data taken under the historical partnership, and it is expected that they will also provide this service for data taken under the new management, at least in the short term. The observatory’s science support and scientific computing teams will be retained intact by EAO and will continue to be available to provide support to users, for both old and new observations.

From October 2012 to September 2014, Dr Doug Johnstone was seconded to the JCMT from NRC Herzberg and served as Associate Director. I am extremely grateful to Doug for agreeing to take on this challenging but vital position for two years, and for splitting his time between Hilo and his permanent residence in Victoria. His primary responsibilities were to oversee the JCMT Legacy Survey and the JCMT Science Archive, both of which he fulfilled admirably and with his usual infectious enthusiasm, and I think he even enjoyed the experience! Doug has now returned to his position as a staff scientist in the Radio Astronomy Programme at NRC Herzberg.

This is my last column for Cassiopeia after more than 12 years as Director of the JCMT. Following the transfer of the telescope at the end of January 2015, I will be moving to the UK to take up a new position as Director of Operations Planning for the SKA project. It is a challenge to which I look forward with enormous enthusiasm, not only because it will take me back to England, where I spent several happy years as a student and postdoc, but also because it will be a huge change of outlook to be involved at the early stages of an ambitious project rather than continually being on the defensive. I look back on my time at the JCMT with pride at what has been accomplished: three new instruments working extremely well (ACSIS, HARP and SCUBA-2), two more ready to be commissioned (POL-2 and FTS-2), a vibrant legacy survey programme producing frontier science across a wide range of astrophysics, a full-featured science archive in collaboration with CADC, and most recently of course a secure future for the observatory and its staff. It has been a labour of love.