Cosmic Ecosystems Conference at Perimeter Institute July 28-August 1, 2025

We are pleased to announce the Cosmic Ecosystems conference to be held at Perimeter Institute for Theoretical Physics in Waterloo Ontario from July 28-August 1, 2025.

Website: https://events.perimeterinstitute.ca/event/927/
Contact: conferences@perimeterinstitute.ca

Important dates

Abstract submission closes: April 23, 2025
Conference dates: July 28 – August 1, 2025

Description

In the past three decades, one of the most transformative insights in cosmology has been the realisation that the formation and evolution processes of cosmic structures such as supermassive black-holes, galaxies and clusters are deeply interconnected with the vast cosmic web that underpins the Universe. These processes do not happen in isolation, but are part of a dynamic ecosystem where matter and energy flow across scales, driving the growth and transformation of cosmic environments. Understanding this complex system, in particular the circum-galactic medium (CGM), is not only key to deciphering how matter is cycled and redistributed through accretion via filaments and outflows from AGN and supernovae, but also crucial for unlocking the next generation of discoveries in areas such as dark matter, the behaviour of the cosmic web, the forces that shape cosmic evolution, and more.

This conference seeks to bring together cosmologists and astrophysicists to foster collaborative exploration of these interconnected cosmic ecosystems. By focusing on how structures interact with their environments across cosmic scales, this conference aims to catalyse groundbreaking discoveries in both astronomy and physics, providing fresh insights into the forces that govern the Universe. Special attention will be given to the joint analysis of large-scale structure and weak gravitational lensing data from surveys such as DESI, Euclid, LSST and Roman with CMB data from the Simons Observatory and CMB-S4, as well as how these can be integrated with observations of JWST, and existing and upcoming observations of X-ray emission, UV/X-ray absorption toward quasars, 21-cm emission, and FRBs.

The goal is to explore the complementarity of these data sets and how their alignment can provide new insights into the interconnected processes shaping cosmic environments, particularly through joint modelling and simulations of many phases of gas and feedback across different regimes. Attention will also be given to bridging the gap between how cosmologists and astronomers approach the CGM, either top-down large-scale and hot and virial phase, vs bottom-up, cooler phases, at smaller scales.

Topics will include:
· Cosmic mass budget, including a census of where the baryons are.
· Effect of baryons on dark matter structures on small and large scales.
· Cosmic evolution of large-scale structures.
· Bridging the gap between different probes.

The time has never been more right to unify these fields, as advances in observation, theory and simulations are poised to open new paths to revealing the cosmos’ most profound mysteries.

Please see the conference website for more information.

Please share this announcement with your colleagues!

Local Organizing Committee (LOC)

Selim Hotinli (Perimeter Institute)
Neal Dalal (Perimeter Institute)
Mike Hudson (University of Waterloo, Waterloo Centre for Astrophysics)
Matt Johnson (Perimeter Institute)
Katie Mack (Perimeter Institute)
Brian McNamara (University of Waterloo, Waterloo Centre for Astrophysics)
Arielle Phillips (University of Notre Dame / Simons Emmy Noether Fellow at Perimeter Institute)
Kendrick Smith (Perimeter Institute)

Scientific Organizing Committee (SOC)

Nick Battaglia (Cornell)
Hsiao-Wen Chen (University of Chicago)
Megan Donahue (Michigan State University)
Claude-André Faucher-Giguère (Northwestern)
Cameron Hummels (Caltech)
Selim Hotinli (Perimeter Institute)
Ian McCarthy (Liverpool John Moores University)
Daisuke Nagai (Yale)
Gwen Rudie (Carnegie Institution for Science)
Freeke van de Voort (Cardiff University)
Jessica Werk (University of Washington)

ngVLA update

By Erik Rosolowsky (University of Alberta), Joan Wrobel (NRAO)

In December a position paper on the Next Generation Very Large Array (ngVLA) was submitted
for the Mid-Term Review of LRP2020. A slightly modified version of the paper appears below
which we hope summarizes ngVLA developments over the past few years. If you want to get
more involved in ngVLA efforts in Canada, email rosolowsky [at] ualberta.ca

The ngVLA in a Nutshell

The ngVLA is a proposed new centimetre-wave interferometer that is being developed by the
US National Radio Astronomy Observatory (NRAO) to replace two existing aging facilities, the
Jansky Very Large Array (VLA) and the Very Long Baseline Array (VLBA). The ngVLA would
provide factors of 10 improvements in sensitivity and resolution relative to the VLA over the
critical frequency range of 1.2-116 GHz, positioning the new facility to become the premier world
observatory at frequencies between those covered by the Square Kilometre Array (SKA) and
the Atacama Large Millimeter/submillimeter Array (ALMA).

Conceptual design for the ngVLA. The ngVLA would comprise 244 antennas of 18-m diameter clustered in the US southwest but spread out between Hawaii and the US Virgin Islands, an 8860-km maximum baseline. Antenna placements in Canada and Mexico are under consideration. The ngVLA would also involve 19 antennas of 6-m diameter in a close-packed array at the current VLA site in New Mexico. Image credit: ophia Dagnello (NRAO/AUI/NSF)

The ngVLA would enable science not achievable with either ALMA or the SKA. For example, improved sensitivity at 30 GHz would  allow the measurement of the optically thin Rayleigh- Jeans tail of dust emission from protoplanetary disks, resolving planet formation across 1000s of systems. Interferometer sensitivity is driven in part by collecting area, and ALMA lacks the sensitivity to make these measurements, even with the ALMA 2030 upgrade. Furthermore, the SKA would not reach sufficiently high frequencies to detect dust emission.

Strategically, the ngVLA would provide unmatched capabilities to:

  • Observe planets in formation in the terrestrial zone of protoplanetary disks;
  • Observe prebiotic molecules and chiral molecules in hot cores;
  • Capture key organic and inorganic molecules like carbon-chain species, NH 3 , and radio
    recombination lines that trace the dust and gas chemistry and kinematics of star
    formation;
  • Probe the thermal radio continuum and long wavelength dust emission;
  • Access key spectral transitions like the fundamental transition of the CO gas tracer from
    z=0 to z=12;
  • Observe elusive pulsars toward the Galactic Centre to make precise tests of gravity;
  • Probe the formation and evolution of black holes in the era of multi-messenger astronomy; and
  • Observe targets in the northern hemisphere.

Key ngVLA Developments Since LRP2020

The ngVLA was evaluated in LRP2020 and presented as one of the Recommended Ground-Based future facilities for Canadian participation, with the caveat of its status in the US Decadal review. Astro2020 subsequently rated the ngVLA as one of the key new facilities for US ground-based astronomy, alongside an optical ELT and CMB-S4. Driven by the strong US Decadal support, NRAO has rapidly developed the ngVLA design, successfully passing a Design Review in September 2024 and preparing it for acceptance by the US National Science  Foundation (NSF). The project is now in the US NSF’s Major Research Equipment and Facilities Construction queue, which is essential for the project to proceed to the construction phase. A Preliminary Design Review is expected to occur in approximately 18 months.

The US NSF has provided sufficient funding support to design, build and test a prototype 18-m ngVLA antenna. This prototype is now being assembled at the current VLA site in New Mexico and is expected to be turned over to NRAO for testing in early 2025. With continued support and development, the ngVLA could begin early science in the start of the next decade with full capabilities available in the late 2030s. While the US expects to be the primary funding source for the ngVLA, the project is seeking international partners. Thus far, early ngVLA developments have engaged the technical communities in Canada, Mexico, Germany, and Japan, and science communities worldwide. The ngVLA construction phase has a total project cost of US$3.2B (FY2020) according to Astro2020 TRACE analysis. External partners (both international and US domestic partners) are expected to provide ~25%. The science interests in the Canadian community should support a similar level of engagement as for ALMA or the SKA at approximately 5%.

One primary strength of the ngVLA is its mature facility design, underpinned by NRAO’s many decades of experience in the construction and operation of the VLA, VLBA, and ALMA. Overall, the ngVLA is low-risk in terms of technical design and has flexibility regarding exactly where its antennas will be located.

In the broader landscape of long-wavelength Canadian observatories, Canada has joined the SKA, securing access to cutting-edge low-frequency radio astronomy. Canada also remains actively engaged in submillimetre observations through ALMA, which has a robust upgrade and development plan to improve capacity, especially at >100 GHz. However, the key global facility in the 10-50 GHz range remains the 45-year old VLA.

Without being an ngVLA partner, Canada would need to access the facility through the Open Skies program, for which the US NSF has an expectation of reciprocity. It is anticipated that all SKA partners not involved in ngVLA construction or operations may collectively be limited to <5% of ngVLA time. In contrast, an SKA partner who contributes to ngVLA construction and operations can expect to be able to participate in the larger pool of Open Skies time.

Why the ngVLA Must Remain a Top Canadian Priority

  • Participating in the ngVLA would provide an essential waveband to support Canadian science priorities as articulated in the LRP (galaxy evolution, star and planet formation, transients, pulsar astronomy, black hole growth). These opportunities would be unique to the ngVLA, with neither the SKA nor ALMA able to execute its key science goals.
  • Our existing national expertise in low-cost antenna production, receiver development and correlators for interferometers, primarily through NRC, means that we would have clear opportunities for contributions to the ngVLA. This includes both design work, as is currently happening, and in the construction of the facility. Continuing our legacy of excellent hardware contributions would further develop our national STEM capacity and would continue to have spin-off applications for Canadian industry.
  • Being a partner in the ngVLA would ensure a Canadian voice in its science steering and to lead major discoveries with the ngVLA. Key science projects are being designed now. Canadians are welcome at this point because of our expertise and potential engagement, but we risk being frozen out of defining the major science cases for this facility if we do not establish formal partnership. These science cases align well with LRP2020 goals and will remain active science themes throughout the next decade.
  • Investment in the ngVLA would happen primarily in the next decade, but Canada should be planning for this transformational instrument now. Given the robust design and low- risk for construction, we could present a clear case and timeline for funding that happens after our SKA construction contributions. Furthermore, the US has historically been a reliable partner in radio astronomy (e.g., in the upgrades to the VLA and in our partnership in ALMA). Additionally, the ngVLA would be administered through partnership agreements that do not require extensive governance development. Hence, the path to Canadian participation in ngVLA would be easier than for the SKA.

President’s Message

By Sarah Gallagher (Western)

Dear CASCA Community,

It has been an honour to continue to collaborate with the CASCA Board, committees, members, and partners since the 2024 Annual General Meeting to advance the priorities of our community. Below are some of the activities that we have been undertaking over the past six months.

The Coalition for Canadian Astronomy continues to support the CASTOR mission  our top priority for space astronomy. To start, we submitted a pre-budget brief to Parliament. At the end of November, the Coalition met with the leadership of the National Research Council and the Canadian Space Agency to hear from them and update them on the mission. The CASTOR team and industrial partners have come together to ask for funding for a Phase A study to continue progress and complete detailed costing for the full mission. This step is considered essential to maintain the confidence of our international partners in what would be the first Canadian-led major space astronomy mission.

To maintain ties and communication with our partners, I continue to meet regularly with Gilles Joncas, the Executive Director of ACURA, and the leadership of CAP. I represented our community in the CAP Strategic Planning process, and we endorsed their submission to the Tri-Councils on the consultation for the capstone agency that will oversee mission-driven and interdisciplinary research funded by the granting councils. Of particular concern for us is robust and sustained support for major facilities, which is directly relevant to our domestic observatories.

The Mid-Term Review was launched in August 2024 and is well underway. The panel has solicited community papers and committee reports to set up further consultations for the beginning of 2025. I have heard multiple times from our partners in government as well as other science communities about the value of our community engagement and consensus-building process through long-range planning and interim mid-term reviews. This process requires substantial and repeated effort, but speaking with a coherent vision is extremely powerful for advancing our ambitious goals. Thank you to the panel and all of you who are contributing.

The last quarter of my term as President starts this January. We will have significant turnover in the Board for the next term, with two Directors, the Treasurer, the Secretary, and the Vice President cycling off. Please consider agreeing or volunteering to stand for election. I’ve been truly fortunate to have such fantastic colleagues during my tenure so far, and I know that given the depth of talent in our community that the new members who step up to take over will be just as committed. I wish all CASCA members a restorative holiday break and a happy 2025!

Best wishes, Sarah Gallagher

Nouvelles de l’Office Gemini Canadien

par Eric Steinbring (Office Gemini Canadien, Conseil national de Recherches Herzberg en Astronomie & Astrophysique)

Nouvelles opportunités

Une nouveauté du semestre 2025A est l’opportunité d’obtenir une introduction virtuelle en direct à Gemini avant la date limite pour compléter la phase II (la soumission des configurations d’instruments qui seront observés dans la queue d’observation). Cette possibilité est offerte par le programme Shadow the Scientists; une session spéciale est prévue le 8 janvier 2025 à 4h30 Heure d’Hawai’i (6h30 dans le Pacifique et 9h30 dans l’Est). Destinée en particulier aux nouveaux.elles utilisateurs.trices, mais ouverte à tous et toutes avec des programmes Gemini en 2025A, cette séance est l’occasion d’assister à des opérations nocturnes réelles, d’apprendre comment la queue d’observation est planifiée, d’avoir un aperçu du logiciel d’observation et de comprendre comment se déroule le processus de la phase II, et, bien sûr, de poser des questions au personnel de l’observatoire. Si la queue d’observation (et les conditions météorologiques) à Gemini-Nord le permettent, des observations pourront être effectuées avec le spectrographe multi-objets de Gemini (GMOS), le spectrographe proche infrarouge de Gemini (GNIRS) ou le spectrographe optique à haute résolution MAROON-X.

Et n’oubliez pas pour la prochaine fois que la politique d’échange de temps entre Gemini et Subaru met également tous ses instruments à la disposition des astronomes canadiens. Et si vous ne le saviez pas déjà, voici une nouveauté sur Subaru: le spectrographe Prime-Focus (PFS) est un énorme spectrographe de 2 400 fibres couvrant une plage de 0,38 micron à 1,26 micron sur un champ de vision de 1,25 degré carré. C’est énorme! De plus, il y a toute la gamme d’autres instruments sur ces trois télescopes d’avant-garde – qui donnent accès à tout le ciel.

Appels de demandes

Le processus unique d’appel de demandes Retour Rapide (=Fast Turnaround) à Gemini est un moyen d’obtenir rapidement de nouvelles données. La date limite pour les demandes RR est à la fin de chaque mois. La prochaine est à 12PM (midi) heure d’Hawaï le 31 décembre 2024, pour des observations du 1er février au 30 avril 2025. Elles sont plus faciles à rédiger et plus courtes qu’une demande d’un semestre normal. Les auteurs.trices des demandes acceptent d’examiner certaines des autres demandes en échange. Cela peut donc servir à s’entraîner des deux côtés de ce processus, ce qui peut être bénéfique pour les chercheurs.euses en début de carrière. Historiquement, les Canadiens.nes ont appris à bien faire ces choses. Les demandes ne doivent pas nécessairement être urgentes (et le temps discrétionnaire du directeur est toujours disponible, si c’est vraiment le cas), mais elles représentent probablement une petite demande de temps qui pourrait être observée plus tôt que le prochain appel de demandes régulier. En fait, il s’agit peut-être d’un programme pilote pour une demande plus importante, ou d’une dernière observation rapide qui complète un ensemble de données antérieur ou le rend plus utile. Ou tout simplement une idée opportune à explorer. Au Canada, environ 20 heures par télescope et par semestre sont allouées à ce mode. Il y a eu beaucoup moins de demandes que d’habitude de la part des Canadiens.nes pour ce temps au cours du dernier semestre; et ce temps n’est pas reporté au semestre suivant. Il s’agit donc d’un rappel pour que vos bonnes idées, petites ou grandes, continuent d’affluer. Voir: https://www.gemini.edu/observing/phase-i/ft/ft-cfp.

L’appel de demandes pour les Programmes Longs et Larges (LLP) sur Gemini et les Programmes Intensifs sur Subaru (SIP) arrive bientôt. Il ne s’agit pas de petites idées, mais de programmes plus importants et plus ambitieux qui peuvent nécessiter plus de temps qu’un programme régulier, ou qui doivent être étalés sur plusieurs semestres – ou les deux. Les courtes Lettres d’Intention (https://www.gemini.edu/observing/phase-i/llp#Section1) doivent être remises au début du mois de février, ce qui marque le début de l’exercice de planification visant à déterminer les ressources/instruments nécessaires et l’organisation du comité de revue, avant la date limite de remise des demandes complètes, fixée au 1er avril 2025. Notez que, comme je l’ai dit, le LLP sur Gemini signifie également le SIP sur Subaru – disponible via la politique de temps d’échange de Gemini – ce qui rend toutes les capacités de Subaru également disponibles aux Canadiens.nes. Veuillez consulter l’appel de demandes LLP pour plus d’informations à https://www.gemini.edu/observing/phase-i/llp/.

CASTOR update

By Patrick Côté (NRC-Herzberg), Tyrone Woods (University of Manitoba)

  • The Coalition for Canadian Astronomy. The Coalition for Canadian Astronomy — which brings together representatives from the astronomical community (CASCA), the Association of Canadian Universities for Research in Astronomy (ACURA) and industry — has the goal of securing federal funding for projects endorsed by the LRP. Since mid 2023, the Coalition has been heavily engaged in lobbying for the CASTOR mission as the last of the three major astronomy infrastructure projects from LRP2010 and LRP2020 (VLOT and SKA being the others). A joint letter of support from Canada’s space industry community which emerged earlier this year continues to be an invaluable part of this effort. Coalition members continue to meet with members of parliament, as well with the presidents of NRC and CSA, to move the mission forward. The immediate, urgent priority continues to be the approval of a mission-defining Phase A study (and associated technology development) that would include formal agreements with international partners who await this critical next step.
  • A highly productive CASTOR Technical Meeting was held in Victoria on November 12-14, with nearly three-dozen attendees from across Canada, the UK, USA and France. The meeting brought together researchers working on technology and software development under the UKSA CASTOR Bilateral Programme, NRC Small Teams project and other initiatives. Topics included an overview of the mission status and schedule; a summary of technical outcomes from the recently completed CSA Space Technology Development Program study; data archiving and processing efforts; survey scheduling simulations; simulations of the in-orbit performance of CASTOR’s expected flight detectors; simulations of the expected radiation environment and required detector shielding; a review of grating, DMD, and coating technologies for the UV; first results from CIS120 detector testing programs in Canada and the UK; a progress report on dichroic and coating approaches for red leak mitigation; a progress report on upgrades of the University of Calgary Vacuum UV Laboratory; a progress report on the development of readout and control electronics; a plan for space qualification of CASTOR’s flight detectors; and plans and priorities for the next steps in mission development.
  • Detector Testing and Characterization Program. Upgrades to the vacuum ultraviolet calibration facility at the University of Calgary have been underway throughout most of 2024. This specialized facility is designed for testing and calibration of detectors that operate at UV wavelengths. Major upgrades have been carried out since the facility was last used for testing of the flight detectors for the Ultraviolet Imaging Telescope (UVIT) on Astrosat, which was launched in 2015 and continues to operate. Delta-doped CIS120 CMOS detectors from Teledyne-e2v and JPL have now been delivered to the facility, along with readout electronics provided by NRC-HAA; a test plan is now in place that will see testing and characterization carried out through most of 2025.
  • CASTOR Overview Paper. In 2025, the Journal of Astronomical Telescopes, Instruments and Systems (JATIS) will publish a special issue entitled « Ultraviolet Science and Instrumentation: On the Way to Habitable Worlds Observatory and Beyond”. The CASTOR team has submitted an invited review for the mission, highlighting the current design, science plan, and ongoing technology development — with a focus on synergies with NASA’s Habitable Worlds Observatory (to be launched in the 2040s). The large number of coauthors (>160) reflects the many individuals who have contributed to the scientific, technical and programmatic development of the mission since 2010.
  • Science Planning Tools. Students and postdocs continue to lead the development of a suite of science planning tools (FORECASTOR: Finding Optics Requirements and Exposure times for CASTOR). Ongoing projects include customized Pyxel-based simulations of the in-orbit performance of CASTOR’s expected flight detectors (led by Wasi Naqvi, UBC Okanagan) and an extensive suite of tools for implementation and scheduling of CASTOR’s legacy surveys (led by Michelle Kao, Waterloo), including a detailed trade study for CASTOR’s ground station network.
  • Mid Term Review. The 2025 Mid Term Review of LRP2020 is now underway. MTR2025 “will offer an assessment of the status of the LRP2020 recommendations, an analysis of new opportunities, and recommendations to address emerging issues.” The CASTOR project has updated the MTR panel and JCSA on the mission status, new opportunities since LR2020, plans for future development, contributions from international partners as well as the expected schedule and timeline.

For more information on the mission, see https://www.castormission.org/fr

 

Nouvelles et mises à jour du TCFH

par Nadine Manset (Directrice des opérations scientifiques, au nom de la ʻohana TCFH)

Récemment

Tel que proposé dans son plan décennal, le CFHT a offert jusqu’à 400 nuits pour des Grands Programmes (GP) à exécuter sur un maximum de 1,5 an pour MegaCam, et un maximum de 2 ans pour ESPaDOnS et SPIRou, en 2025 et 2026. CNRC (Canada) et le CNRS (France) ont offert jusqu’à 70% de leur temps pour cette série de Grands Programmes. Le CFHT est heureux d’annoncer que sur les 400 nuits offertes, 330 nuits ont été attribuées à deux grands programmes MegaCam, UNIONS+ et Pristine, et à un GP SPIRou, PLANETS.

«UNIONS»: Securing the Imaging Legacy of CFHT» est dirigé par Alan McConnachie (NRC Herzberg), S. Gwyn (CADC) et J.C. Cuillandre (CEA), et comprend plus de quatre douzaines de co-I canadiens. UNIONS, le Ultraviolet Near Infrared Optical Northern Survey, est l’étude à grand champ multibande (u, g, r, i, z) par excellence dans l’hémisphère nord. UNIONS+ étendra la couverture actuelle et contribuera plus de 40% des données prises au sol pour la mission Euclid. UNIONS apporte déjà à lui seul des réponses à certaines des questions les plus fondamentales de l&#39;astronomie, notamment les propriétés de la matière noire, la croissance des structures de l&#39;Univers depuis les plus petites galaxies jusqu’à l’échelle des amas de galaxies, et l’assemblage de la Voie Lactée.

«PLANETS: PLanets, Atmospheres, and Nativity of ExtraTerrestrial worldS» est dirigé par Jean-François Donati (IRAP/OMP) et comprend plusieurs collaborateurs du Canada, dont E. Artigau (Université de Montréal), N. Cowan (Université McGill), et plus d’une douzaine d’autres. S’appuyant sur les résultats des GP SLS et SPICE avec SPIRou, PLANETS se concentrera désormais sur les naines M proches de très faible masse pour dévoiler et caractériser leurs systèmes planétaires, sur les étoiles de faible masse de la séquence pré-principale dont les processus d’accrétion, l’accrétion interne les disques et les systèmes planétaires internes seront étudiés pour améliorer notre compréhension de la formation des étoiles et des planètes, et sur une poignée d’atmosphères d’exoplanètes qui seront scrutées à plusieurs reprises afin de quantifier avec précision leurs propriétés physiques.

«Le Grand Programme Pristine cartographiera la métallicité du système de la Voie Lactée». Dirigé par Nicolas Martin (Observatoire Astronomique de Strasbourg) et comprenant également de nombreux astronomes canadiens (S. Fabbro et A. McConnachie du CNRC Herzberg, A. McKay, F. Sestito et K. Venn de l’Université de Victoria, et quelques autres), l’équipe s’appuiera sur sa vaste expertise du CFHT, de MegaCam et son excellent filtre Ca H&K sensible à la métallicité pour pousser l’enquête Pristine qui étudie les étoiles les plus anciennes de la Voie Lactée. Les observations déconstruiront notre galaxie en ses différentes composantes (disque, halo, satellites) pour permettre une comparaison directe et approfondie avec les prédictions des modèles de formation et d’évolution de galaxies. Dans le même temps, toutes les étoiles extrêmement pauvres en métaux ([Fe/H]<–3,0) découvertes avec ce programme contribueront de manière significative à la quête de la première génération d’étoiles. Pour de plus amples détails, veuillez consulter la page suivante:
https://www.cfht.hawaii.edu/en/science/LargePrograms/LP25A/

Le TCFH et l’Observatoire W. M. Keck ont ​​eu le grand honneur une fois de plus de co-parrainer le
traineau du Père Noël lors du défilé illuminé de Noël de Waimea, le 7 décembre. La parade de Noël a été
suivie d’une soirée étoilée au TCFH au cours de laquelle les participants ont pu observer la Lune, Saturne
et Jupiter. Du chocolat chaud et des biscuits attendaient ceux qui se promenaient à l’intérieur de notre
siège social pour regarder notre observatrice en train d’obtenir les observations au télescope.


Bientôt

Si vous assistez à la réunion de l’AAS en janvier, venez à notre stand, participez à la séance spéciale sur
l’astronomie communautaire ou discutez avec nous lors de la séance spéciale en soirée sur le TCFH.
En janvier, nous ouvrirons également les inscriptions pour la rencontre des utilisateurs, qui aura lieu du
26 au 28 mai au Lac-à-L’Eau-Claire, Québec. Des informations préliminaires sont disponibles
https://www.cfht.hawaii.edu/en/news/UM2025/venue.php

Mele Kalikimaka a me Hauʻoli Makahiki Hou!

ALMA Matters

By Brenda Matthews & Gerald Schieven (NRC-HAA)
(With contributions from Jess Speedie, Hamid Hassani, Brent Carlson)

ALMA Reaches Observing Milestone

In Cycle 10, a record-breaking total of 4,250 hours of science-quality data were successfully collected on the 12-m Array, greatly surpassing the previous record of 3,787 hours achieved during Cycle 5. ALMA also set new records on its other arrays, with 3,769 hours recorded on the 7-m Array and 2,723 hours on the Total Power Array.

Cycle 11 Update

ALMA is currently in configuration C-3, and it will move into C-4 in January until the February shutdown.

Cycle 11 ALMA Ambassadors

Two Cycle 11 ALMA Ambassadors were selected in Canada. Both Jess Speedie and Hamid Hassani opted to run Data Reduction Workshops.

The ALMA Data Reduction Workshop hosted at the University of Victoria by Jess Speedie took place on 22 October 2024. A full-day event designed to support astronomers of all experience levels, the workshop brought together 18 in-person participants from UVic, NRC Herzberg and UBC, as well as 6 virtual participants from Zambia, China, India and the USA. The program featured lectures covering the fundamentals of radio interferometry, an introduction to CASA, and a special guest lecture by Dr. Helen Kirk on using the CANFAR Science Platform to work with ALMA data. Attendees participated in hands-on tutorials focused on continuum and spectral line imaging, as well as manual and automated self-calibration techniques. Materials from the workshop, including tutorial scripts and lecture slides are available.

The ALMA Data Processing Workshop hosted at the University of Alberta by Hamid Hassani took place on October 24, 2024. This full-day event brought together about 15 in-person participants from the University of Alberta, University of Calgary, University of Lethbridge, and Athabasca University, along with several online attendees from the USA, Mexico, and Iran. Designed to support astronomers of all experience levels, the program included sessions on radio interferometry fundamentals, ALMA data calibration, CASA imaging, array combination techniques like feathering, and data visualization with CARTA. A highlight of the workshop was a session on the PHANGS ALMA pipeline, presented by Dr. Erik Rosolowsky, which covered staging, imaging, and post-processing workflows.

Attendees participated in hands-on tutorials, working directly with ALMA datasets, and gained practical skills for reducing and analyzing radio data. Workshop materials, including guides and scripts, were shared with participants and are also available.

Renewal of the NRC-NSF agreement for Canadian participation in ALMA

An ALMA Review Panel was struck in September to provide a recommendation to NRC regarding the community’s enthusiasm for the renewal of the current agreement between NRC and the NSF that commits Canada to providing 7.125% of the North American ALMA contribution of 37.5%. For our 7.125% contribution, Canadian astronomers access the pool of ALMA time available to North American researchers (33.75% of the total time, taking into account the 10% of time that goes to Chile).

To provide input to the panel’s efforts, the Millimetre Astronomy Group (MAG) at NRC prepared on online survey of CASCA members regarding ALMA use and satisfaction. We received 49 responses. Some of the key findings were:

  • 96% affirm that the current arrangement for Canadian access to ALMA time is a good investment for Canadian astronomy;
  • 95% of those who have applied to ALMA as a PI or co-I have been successful;
  • 92% of respondents intend to propose to ALMA in the future (80% have already done so);
  • 75% reported that ALMA data they received was amazing, with the same fraction reporting a publication resulting from their data;
  • Just 22% of respondents have participated in a press release based on ALMA data;
  • 60% report that ALMA data have played a key role in the training of HQP;
  • Just over 40% report using the CANFAR Science Platform to work with ALMA data.

A full summary of the survey results is available.

If you are interested in using CANFAR to work with ALMA data, please contact Helen Kirk via email (helen.kirk[at]nrc-cnrc.gc.ca).

ATAC Update

The Advanced Technology ALMA Correlator (ATAC), formerly known as the ALMA TALON Central Signal Processor (AT.CSP) is an NRC-NRAO project. In June of this year, ATAC passed the Preliminary Design Review (PDR) and the delta-SRR (Subsystem Requirements Review). Effort is now focused on detailed design work for the Critical Design Review (CDR) to be held in Charlottesville, VA in Sept 2025.

Recent hires related to the project include a new Project Manager, new Configuration/Document manager and a new Systems Engineer. Two new FRGA engineering hires are expected to start in the new year. DRAO will host the entire ATAC team onsite for brainstorming and planning sessions in the week of 20 Jan 2025.

ALMA Primer Video Series

The ALMA Primer Instructional Video series, which can be found on the Science Portal, is designed to provide a basic introduction to radio interferometry, calibration, imaging, and other topics in short (5-10 minute), easy-to-digest segments. As a work in progress, new videos are released periodically. Recent videos included a series explaining sidebands, basebands and spectral windows, with practical examples on tuning setups. A new video on how ALMA receivers work is under production, and is expected to be released by March 2025.

Other videos in the series include an Introduction to Radio Interferometry, Calibration, CLEAN, and much more. Subscribe to the ALMA Primer Video Series YouTube channel to be alerted to new videos as they are released.

We are always looking for ideas for new videos, and especially looking for people who would like to help with script generation, animation, and narration. If you have an idea or would like to join the Primer Video Working Group (at any level of effort), please contact gerald.schieven[at]nrc-cnrc.gc.ca.

Brandon University: Faculty Vacancy, Department of Physics and Astronomy

Brandon University is a leader in providing high quality education in arts, sciences, education, music, and health studies. Based in Manitoba’s second largest city in the southwest corner of the province, Brandon University is a predominantly undergraduate institution with an enrolment of about 4000 full and part-time students, but also offers an interdisciplinary Master’s of Science degree program in many disciplines within science.

The Department of Physics and Astronomy at Brandon University invites applications for a full-time probationary tenure-track position beginning January 1, 2025. Please see https://www.brandonu.ca/jobs/job/probationary-tenure-track-position-department-of-physics-and-astronomy-faculty-of-science/

Applications are solicited from all fields of Physics and Astronomy and particularly from candidates with expertise in astrophysics or astronomy.

The Department often hosts graduate students from the University of Manitoba and postdoctoral fellows, and operates a popular campus astronomical observatory with a 0.41 metre Ritchey-Chretien Cassegrain telescope used for teaching and outreach, a solid-state NMR facility, and a Linux cluster.  Students at Brandon University value passion and excitement for their subjects in their professors, as well as a sincere desire for meaningful interaction. The successful candidate will be expected to contribute to B.Sc. degrees with a major in Physics 3-year, 4-year and 4-year Honours programs, and encouraged to help the department develop an Astronomy Minor program to meet popular student demand.

Qualifications: A Ph.D. in Physics, Astronomy or related field at the time of application or shortly thereafter is preferred. Applicants may seek to establish an experiential/traditional equivalency to these qualifications and are invited to contact the Chair of the Selection Committee on how to establish equivalent academic or professional credentials.

A successful track-record of teaching and research excellence will be a significant asset, as would a background of community and University service and a keen interest in continuing the department’s strong tradition of public astronomy outreach at the observatory.

Rank and Salary: commensurate with qualifications and experience as per the 2023-27 Collective Agreement between Brandon University and Brandon University Faculty Association. See  https://www.brandonu.ca/hr/files/BUFA-2023-27-Collective-Agreement.pdf

Application deadline: September 15, 2024 or until the position is filled.

Start Date: January 1, 2025
Applications must be sent via e-mail in a single pdf file of reasonable size and include:

•    Letter of application
•    Curriculum Vitae
•    One page statement of teaching philosophy and interest
•    Two page research plan
•    Citizenship or Canadian immigration status
•    Names and e-mail addresses of three referees

Please submit applications directly to:  Dr. Chris LeMoine, Dean of Science, Brandon University, Brandon, MB, R7A 6A9 E-mail:  science@brandonu.ca

We thank all applicants for their interest in applying for this position and advise that only candidates selected for interviews will be contacted.  Short listed candidates will be expected to provide copies of credentials at time of interview.

Brandon University is committed to equity, welcomes diversity, and hires on the basis of merit.  All qualified individuals who may contribute to the diversification of the University, especially women, persons with disabilities, Indigenous persons, racialized persons, and persons of all sexual orientations and genders are encouraged to apply.  Canadian citizens and permanent residents are given priority.  Evidence of citizenship must be provided. We are committed to providing an inclusive and barrier-free work environment.  This starts with the hiring process.  If you require an accommodation during any phase of the evaluation process, contact HR at hr@brandonu.ca.   All information received related to an accommodation is kept confidential.  To ensure this employment opportunity is accessible to all interested individuals, this posting is available in an alternate format upon request.

Offre d’emploi: Ingénieur ou ingénieure en systèmes de radioastronomie

Nous recherchons un ingénieur en systèmes de radioastronomie pour soutenir notre centre de recherche en astronomie et astrophysique de Herzberg. L’ingénieur en systèmes de radioastronomie serait une personne qui partage nos valeurs fondamentales d’intégrité, d’excellence, de respect et de créativité.

Situé à Penticton, en Colombie-Britannique, l’Observatoire fédéral de radioastrophysique (OFR) est le site de plusieurs télescopes établis et le lieu de la conception et de la construction actives de composants pour les installations actuelles et futures.

L’ingénieur en systèmes de radioastronomie sera membre de l’équipe d’ingénierie des systèmes radio de l’OFR et relèvera du chef de l’équipe des systèmes radio. Il sera chargé de diriger et de développer les efforts d’ingénierie des systèmes en cours pour le projet de corrélateur ALMA de technologie avancée (ATAC) en cours de développement pour l’amélioration de la sensibilité à large bande du grand réseau millimétrique-submillimétrique d’Atacama (ALMA), et d’aider à la coordination technique du projet, le cas échéant. Le titulaire de ce poste collaborera avec une équipe internationale de scientifiques et d’ingénieurs pour atteindre les objectifs du projet ATAC.

Etudes:
– Baccalauréat en génie électrique/électronique, mécatronique, génie physique, génie robotique ou dans une discipline connexe.

Experiences:
– Expérience significative dans l’application des pratiques d’ingénierie des systèmes dans un environnement basé sur des projets.
– Expérience significative du travail sur un ou plusieurs projets de développement avec des examens de phase.
– Expérience significative de l’ingénierie pluridisciplinaire, avec participation à un large éventail d’aspects contribuant à la mise au point d’un système technique.
– Expérience significative de travail sur des projets comportant des composants électroniques et/ou des systèmes informatiques/de calcul à haute performance.
– Expérience significative du travail en équipe avec le personnel d’ingénierie pour élaborer des exigences, des documents d’interface et des plans d’essai.
– Une expérience de la rédaction d’exigences formelles en radioastronomie ou dans un domaine connexe tel que le radar ou les télécommunications par satellite, à l’aide d’un logiciel de saisie et de gestion des exigences, serait considérée comme un atout.

Une expérience significative est définie comme 2 à 6 ans d’expérience.
Extensive est définie comme une expérience de 7 ans ou plus.

Competences techniques:
– Maîtriser les pratiques et les outils de l’ingénierie des systèmes.
– Compréhension claire des principes fondamentaux de diverses disciplines d’ingénierie telles que l’électronique, la mécanique de base et l’ingénierie logicielle.
– Aptitude avérée à rédiger des documents de projet tels que des documents de contrôle des interfaces, des plans d’essai et des exigences formelles pour des systèmes complexes.
– Capacité avérée à diriger des initiatives d’ingénierie des systèmes en groupe.
– La connaissance et l’expérience des outils logiciels de saisie et de gestion des exigences seraient considérées comme un atout.
– La connaissance de la radioastronomie, du radar ou des technologies de communication par satellite, y compris des systèmes analogiques et numériques, des logiciels et des systèmes mécaniques de base, est considérée comme un atout.

Exigences linguistiques: Anglais

Numero de requisition: #22344

Comment POSTULER: https://recruitment-recrutement.nrc-cnrc.gc.ca/job/Penticton-Ing%C3%A9nieur-ou-ing%C3%A9nieure-en-syst%C3%A8mes-de-radioastronomie-BC/583076717/

 

CanDIAPL Project Manager

We are looking for a Field Programmable Gate Array (FPGA) Digital Design Engineer to support our Herzberg Astronomy and Astrophysics (HAA) Research Centre. The FPGA Digital Design Engineer would be someone who shares our core values of Integrity, Excellence, Respect and Creativity.  Help bring research to life and drive your career forward with the National Research Council of Canada (NRC), Canada’s largest research and technology organization.

The Astronomy Technology Directorate (ATD) at NRC’s HAA Research Centre is engaged in the development of leading-edge instrumentation for some of the world’s largest observatories. The ATD currently requires an FPGA Digital Design Engineer to develop leading-edge designs which implement Digital Signal Processing (DSP) algorithms to meet high-performance signal processing requirements.  Additionally, the FPGA Digital Design Engineer will participate in configuration and performance testing of programmable 400G network switches, in the context of FPGA-to-FPGA and host processor-to-processor high- throughput communications.

A significant effort is currently underway by the ATD to deliver a correlator for a major upgrade of the Atacama Large Millimeter Array (ALMA) radio telescope in Chile. The overall upgrade project is referred to as the ALMA Wideband Sensitivity Upgrade (WSU). The correlator design uses current-generation FPGA technologies for signal processing along with 400Gbps Ethernet switches to facilitate data distribution through the correlator system. The work of the FPGA digital design engineer is to develop, test, and support integration of the FPGA designs required to implement the correlator. The work will also require configuration of 400Gbps Ethernet switches in order to test the interconnection of multiple FPGAs.

The successful candidate will primarily undertake FPGA engineering tasks including design documentation, RTL development, testbench development, static timing analysis, SEU analysis, power analysis, and integration testing. FPGA development will be done primarily using Very High-Speed Integrated Circuit Hardware Description Language (VHDL), simulated using Questa/Modelsim, and synthesized using Intel Quartus Prime Pro. Other tools/environments may include C/C++ high-level synthesis (HLS), SystemVerilog, MATLAB/Simulink, or Xilinx Vivado/HLS. Appropriate documentation must be developed by the successful candidate and therefore professional writing skills are essential. The candidate will be working within the context of an international team, and so the ability to engage other international team members in an appropriate manner for mutual success is important.

Education:
– Bachelor’s degree or higher in Electrical Engineering, Computer Engineering or Engineering Physics.
– A demonstrated focus/specialization/background in FPGA design, Digital Signal Processing implementation in FPGAs, and digital system engineering would be considered an asset.

Experience:
– Significant experience in FPGA or ASIC design, implementation, and testing.
– Significant experience in RTL development using VHDL or Verilog.
– Significant experience with Ethernet networks and network equipment.
– Significant experience developing in a Linux or Unix environment.

Significant is defined as 2 to 6 years of experience
Extensive is defined as 7 years or more of experience

Technical competencies:
– Expert knowledge of FPGA design and implementation to meet high performance requirements, including methods for parallelization of algorithms, trade-offs between performance and logic usage.
– Working knowledge of DSP algorithms and fundamental concepts: coherent systems, analog to digital conversion, Nyquist sampling theorem, quantization effects, FFTs, FIR filters, complex correlation, and pipelining effects.
– Demonstrated ability to use logic simulation tools to develop and test FPGA designs, with development of self-checking test benches.  Must have knowledge and ability to run Questa/Modelsim (or equivalent) and interpret results to ensure correctness of design.
– Demonstrable expert technical writing ability.

Considered an asset:

Understands system-level issues, including system-level architecture, racks/boards, fiber connectivity, power and cooling, reliability, and fault detection/tracing.

Language requirements:
– English

Apply:https://careers.obio.ca/companies/university-of-toronto/jobs/38972209-project-manager-candiapl