Rapport final de PLT2020

Chers collègues:

Au nom de Matt Dobbs, Jeremy Heyl, Natasha Ivanova, David Lafrenière, Brenda Matthews et Alice Shapley, nous sommes heureux de présenter le rapport final du Plan à long terme 2020 de la CASCA pour l’astronomie canadienne (PLT2020). La version non formatée du rapport est désormais disponible sur le site Web de CASCA sur . Une version conçue par des professionnels et une traduction en français sont en cours et devraient être disponibles au début de 2021.

Nous remercions tous ceux qui ont contribué à ces recommandations en rédigeant un livre blanc, en assistant à une discussion communautaire, en participant à des consultations ou en répondant à nos nombreuses demandes d’informations. Nous voudrions particulièrement souligner le travail très dur des membres du panel PLT2020 au cours des vingt derniers mois.

La section PLT2020 sur le site Web de la CASCA (https://casca.ca/?page_id=11501&lang=fr) contient des liens vers tous les livres blancs et rapports soumis ainsi qu’un résumé du processus. Les versions conçues et traduites du rapport y seront disponibles quand fini.

Pauline Barmby & Bryan Gaensler
co-présidents PLT2020
chairs@lrp2020.groups.io

Rapport final de LRP2020

Au nom de Matt Dobbs, Jeremy Heyl, Natasha Ivanova, David Lafrenière, Brenda Matthews et Alice Shapley, nous sommes heureux de présenter le rapport final du Plan à long terme 2020 de la CASCA pour l’astronomie canadienne (PLT2020). La version non formatée du rapport est désormais disponible sur le site Web de CASCA. Une version conçue par des professionnels et une traduction en français sont en cours et devraient être disponibles au début de 2021.

Nous remercions tous ceux qui ont contribué à ces recommandations en rédigeant un livre blanc, en assistant à une discussion communautaire, en participant à des consultations ou en répondant à nos nombreuses demandes d’informations. Nous voudrions particulièrement souligner le travail très dur des membres du panel PLT2020 au cours des vingt derniers mois.
La section PLT2020 sur le site Web de la CASCA contient des liens vers tous les livres blancs et rapports soumis ainsi qu’un résumé du processus. Les versions conçues et traduites du rapport y seront disponibles quand fini.

Pauline Barmby & Bryan Gaensler
co-présidents PLT2020
chairs@lrp2020.groups.io

Sincerely,
Pauline Barmby

Prof. Pauline Barmby
Associate Chair, Undergraduate Programs
Department of Physics & Astronomy, Western University
pbarmby@uwo.ca

Canadian Astronomy, Racism, and the Environment – Part 1

By / par Martine Lokken, Chris Matzner, Joel Roediger, Mubdi Rahman, Dennis Crabtree, Pamela Freeman, Vincent Henault-Brunet (The CASCA Sustainability Committee, The CASCA Equity & Inclusivity Committee)
(Cassiopeia – Autumn / l’automne 2020)

Part 1: An Introduction to Environmental Racism

This year’s widespread protests in support of Wetʼsuwetʼen sovereignty, and in support of Black lives in the face of police brutality, have brought heightened attention to the racism and systemic racial inequalities that have long threatened Indigenous and Black people in North America. The astronomy community has been coming to terms with its own systemic racism [1], and it is important that we examine our field’s environmental impacts [2] through the same lens. In this moment, we in CASCA’s Sustainability Committee reflect on the many ways in which environmentalism and racism interact. Here we present some background on how these issues are intertwined with the climate crisis and environmental damage both globally and within Canada. In a later article with the Equity & Inclusivity Committee we will ask how we as astronomers have benefitted from and perpetuated racism, environmental or otherwise, and what we can do to change this.

The climate crisis is projected to deal a sequence of crushing blows to peoples of the arctic, equatorial, and oceanic regions of the world. Of those affected, the UN warns that Indigenous peoples face the most climate-based disruption because of their strong cultural and economic connections to the land on which they live [3]. Indeed, this has already begun [4]. Drought now affects a quarter of the world’s population, mainly in equatorial regions [5], leading to food insecurity and mass migration [6, 7]. Heat waves are on the rise, some now surpassing what humans can naturally survive [8]. Last year, massive fires decimated the Australian landscape, damaging perhaps thousands of Indigenous cultural sites [9], while deliberate fires ate away at the home of the Amazon’s Indigenous people. This year’s Amazon fires could be even worse [10], and record heat waves are intensifying annual wildfires in Siberia [11]. Vast floods have covered a quarter of Bangladesh [12], while rising seas are swallowing island nations [13]. The distribution of global wealth plays a major role in deciding who can best survive these extreme events: while wealthy areas of developed nations are able to adapt to some of the effects of climate change through investment in infrastructure, the world’s poorest are disproportionately losing their homes, livelihoods, and even lives [14]. Meanwhile, the worst per-capita contributors to the climate crisis are primarily located in the northern hemisphere [15] and led by wealthy nations such as Canada, the U.S., Australia, Saudi Arabia, and other major oil-producing countries. The disparities between the worst perpetrators of the climate crisis versus those who suffer the greatest impacts correlate with inequalities of wealth, power, and territory that have been sown over the long history of European colonialism, and are reinforced by systemic racism.

Canada is no exception to this. Our country has a tragic history of slavery, anti-Indigenous and anti-Black racism, and attempted erasure of Indigenous cultures. Much of our wealth is based on the exploits of land which often was cheated or taken by force from Indigenous nations [16, 17]. We are currently the fourth largest producer and exporter of oil [18], and the average Canadian’s contribution to the climate crisis is among the world’s greatest [19]. However, unsurprisingly, systemic racism plays a major role in who has benefitted from this wealth versus who is most impacted by the environmental damage.

Many rural Indigenous communities in Canada are disproportionately feeling the effects of climate change. Ice roads, which in the winter enable goods to reach northern communities, become unavailable or unsafe as temperatures rise [20]. Melting ice and extreme weather is cutting Inuit people off from traditional hunting lands, severely threatening people’s physical and mental health [21]. In Eastern Indigenous communities, rising sea levels have negatively impacted traditional medicines and food supplies by increasing the salination of freshwater [22]. In addition to the unintentional impacts from climate change, there are also many situations in which racist planning for polluting sites such as factories, mills, and pipelines have caused environmental harm to rural Indigenous communities. For example, for 53 years the Northern Pulp mill in Nova Scotia treated its effluent in Boat Harbour (A’se’k), a tidal estuary upon which the Pictou Landing First Nation depended for food, livelihoods, and culture. Only this year, after years of community activism, has the provincial government ended the pollution of Boat Harbour, allowing its restoration to begin [23]. These various stresses to rural communities can spur an exodus to urban centers, leading to the loss of languages and cultures that are often deeply connected to the local environment [22, 20].

Systemic racism has also resulted in various environmental disparities for racialized communities in urban areas. The Canadian government warns of the dangers of urban heat islands, areas which amplify warm temperatures due to an excess of paved surfaces and lack of green space [24]. Populations more at risk for heat-related illness include Indigenous people, newcomers to Canada, and poor people [24]. The systemic effects which cause higher poverty rates among racialized people [25] and a lack of heat-protecting infrastructure in poor neighborhoods combine to make racialized Canadians more vulnerable to rising heat waves. (Because of Canadian astronomy’s connections to the U.S., it is also worth noting that the long-lasting effects of racist redlining in many U.S. cities have resulted in heat islands being centered on predominantly Black neighborhoods there [26, 27].) In addition to heat, pollution is another major health issue in urban centers. Similar to Pictou Landing, there are many cases of polluting sites being built near Indigenous or Black communities in urban areas (e.g. “Chemical Valley”, ON [28] and Africville, Nova Scotia [29]). These compounding environmental effects can cause serious health problems in marginalized communities, such as higher cancer rates and respiratory issues [28, 30], increased heat-related illnesses [30], poisoning from high levels of dangerous materials in water sources (e.g. Grassy Narrows, ON [31]), and worse pregnancy outcomes faced by Black mothers [U.S. data, 32]1.

The disproportionate effect of the climate crisis on racialized communities is exacerbated by the casual and systemic racism often present in predominantly-white environmental circles and the policies put forth by them. An important example of this is the centrality of the overpopulation argument to many Western approaches to the climate crisis, including in scientific circles [33]. While regularly debunked by public health scholars with the topical expertise in this area [34,35,36], racist origins and implications have been used to advance racist policies in the name of environmental sustainability [37,38]. This interplay has acted to shift the blame from the consumption of the Global North and casts the blame on the Global South, including some of the very populations that are most susceptible to the effects of the climate crisis.

Therefore, although the climate crisis will affect everyone to some extent, it is important that we recognize how global and local histories of racism and colonialism factor into the equation. Those of us with the privilege to be relatively insulated from environmental damage — at least for now — must especially examine our environmental impact and our complicity in systems of oppression. In doing so, it is essential that we learn from the BIPOC leaders who have historically spearheaded the movement for environmental justice like Dr. Robert Bullard and the Rev. Benjamin Chavis [39] and listen to the young voices, such as Makasá Looking Horse, who are taking the reins [40]). In our next article, we will examine how Canadian astronomy has benefitted from and continues to partake in white supremacist systems while also contributing to environmental injustice. We will discuss how to change the status quo, considering issues such as respect for Indigenous land rights and frequency of academic flights.


1Canada doesn’t require collection of race-based health data, an issue which has gained awareness during the Covid-19 pandemic (https://globalnews.ca/news/7180914/canada-race-based-data-covid-19/).
The general taboos around studying the effects of race in Canada partially explain why there are fewer available resources on environmental racism here than in the US.

References

  1. https://www.particlesforjustice.org/letter
  2. https://arxiv.org/abs/1910.01272
  3. https://www.un.org/development/desa/indigenouspeoples/climate-change.html
  4. https://www.nytimes.com/interactive/2020/08/06/climate/climate-change-inequality-heat.html
  5. https://www.nytimes.com/interactive/2019/08/06/climate/world-water-stress.html?action=click&module=News&pgtype=Homepage
  6. https://features.propublica.org/climate-migration/model-how-climate-refugees-move-across-continents/
  7. https://www.nytimes.com/2018/03/12/climate/kenya-drought.html
  8. https://advances.sciencemag.org/content/6/19/eaaw1838
  9. https://www.nature.com/articles/d41586-020-00164-8
  10. https://www.theguardian.com/environment/2020/jul/17/dramatic-footage-fuels-fears-amazon-fires-could-be-worse-than-last-year
  11. https://www.cbsnews.com/news/wildfires-sibera-russia-burned-area-larger-than-greece-heat-wave/
  12. https://www.nytimes.com/2020/07/30/climate/bangladesh-floods.html
  13. https://www.un.org/en/chronicle/article/small-islands-rising-seas
  14. https://www.nytimes.com/interactive/2020/02/13/climate/manila-san-francisco-sea-level-rise.html
  15. https://ourworldindata.org/per-capita-co2
  16. https://www.ubcpress.ca/asset/9296/1/9780774821018.pdf
  17. http://fnn.criaw-icref.ca/images/userfiles/files/LWM3_ColonialismImpacts.pdf
  18. https://www.nrcan.gc.ca/science-data/data-analysis/energy-data-analysis/energy-facts/crude-oil-facts/20064
  19. https://ourworldindata.org/per-capita-co2
  20. https://bifrostonline.org/how-is-climate-change-impacting-indigenous-communities-in-remote-regions-of-canada/
  21. https://www.theguardian.com/world/2018/may/30/canada-inuits-climate-change-impact-global-warming-melting-ice
  22. https://www.climatechangenews.com/2019/11/28/indigenous-communities-forefront-climate-resilience/
  23. https://www.cbc.ca/news/indigenous/pictou-landing-first-nation-northern-pulp-1.5447179
  24. https://www.canada.ca/en/services/health/publications/healthy-living/reducing-urban-heat-islands-protect-health-canada.html
  25. https://www.canada.ca/content/dam/esdc-edsc/migration/documents/eng/communities/reports/poverty_profile/snapshot.pdf
  26. https://www.nytimes.com/interactive/2019/08/09/climate/city-heat-islands.html
  27. https://www.theguardian.com/society/2020/jan/13/racist-housing-policies-us-deadly-heatwaves-exposure-study
  28. https://ecojustice.ca/exposing-canadas-toxic-secret/
  29. https://humanrights.ca/story/the-story-of-africville
  30. https://science.sciencemag.org/content/early/2020/08/12/science.aay4497/tab-pdf
  31. https://www.cbc.ca/news/canada/thunder-bay/grassy-narrows-framework-1.5520501
  32. https://www.nytimes.com/2020/06/18/climate/climate-change-pregnancy-study.html
  33. https://www.vox.com/the-big-idea/2017/12/12/16766872/overpopulation-exaggerated-concern-climate-change-world-population
  34. Rosling, H., Rosling Rönnlund, A. and Rosling, O., 2019. Factfulness. Paris: Flammarion.
  35. https://www.theguardian.com/world/2019/jan/27/what-goes-up-population-crisis-wrong-fertility-rates-decline
  36. https://www.nhpr.org/post/outsidein-problem-concerns-about-over-population-part-one#stream/0
  37. https://www.newyorker.com/news/news-desk/environmentalisms-racist-history
  38. https://academic.oup.com/bioscience/article/67/12/1026/4605229
  39. https://www.nrdc.org/stories/environmental-justice-movement
  40. https://rabble.ca/blogs/bloggers/making-waves/2018/11/six-nations-youth-leads-protest-against-nestl%C3%A9-water-operation

CATAC Update on the Thirty Meter Telescope

By / par Michael Balogh (CATAC Chair)
(Cassiopeia – Autumn / l’automne 2020)

The COVID-19 pandemic and the ongoing discussions with all stakeholders about site access continue to delay the start of TMT construction, and in mid-July the TMT International Observatory announced that no on-site construction activity would take place this year. However, progress continues to be made on technical components, including development of instrumentation. A notable milestone was the interim Conceptual Design Review of the Wide Field Optical Spectrograph, held in July. This review provided important guidance on the work and planning needed to bring it to a full Conceptual Design level. In addition, over the summer several critical systems completed their Preliminary Design phases and are now ready to move into Final Design. These include the Engineering Sensors System, the Instrumentation Cryogenic Cooling System, and the Optical Cleaning System.

The US-Extremely Large Telescope Project (ELTP) is a collaboration between NSF’s NOIRLab, TMT and the Giant Magellan Telescope (GMT). Its mission is to “strengthen scientific leadership by the US community-at-large through access to extremely large telescopes in the Northern and Southern Hemispheres with coverage of 100 percent of the night sky”. Over the summer, this group has submitted several proposals to the US National Science Foundation (NSF) for the design and planning of the ELTP. In response to one of these proposals, NSF recently issued a three year award to AURA and NOIRLab for the “development of detailed requirements and planning documents for user support services”. See the update here.

The TMT project will face several critical milestones in the next year or so. These will be important for defining the future of the project and addressing some of the questions and concerns that are on the minds of the TMT partners, including Canada. These milestones include:

  • The release of the US Decadal Survey recommendations, expected in the first half of 2021
  • Initial findings from any Environmental Impact Survey (EIS) conducted by the NSF as a result of its engagement in the project
  • The full cost and schedule review that is currently being undertaken by the Project Office

Success at each of these stages is necessary, though not sufficient, for the project to proceed as envisioned.

The alternative site at ORM remains under consideration. CATAC has seen a draft of a report by the Japanese partners on the scientific quality of ORM, which largely comes to the same conclusions we did in our 2017 report. For the time being, we expect the focus to remain on Maunakea until the outcome of the federal EIS is known.

Due to the ongoing discussions and assessments of building on Maunakea, and the processes needed to secure NSF as a new partner, construction may not start until 2023 or later. With a reasonable estimate that first light may not come until about ten years after that (seven years construction plus three years commissioning), science operations with TMT could commence in the mid 2030s. This schedule is not likely to be significantly different if the alternative site is selected. Currently, Canada’s share of the construction costs is estimated to be about 15%, but this will be reevaluated once the Cost Review and negotiations with the NSF are completed.

CATAC membership:
Michael Balogh (University of Waterloo), Chair, mbalogh@uwaterloo.ca
Bob Abraham (University of Toronto; TIO SAC)
Stefi Baum (University of Manitoba)
Laura Ferrarese (NRC)
David Lafrenière (Université de Montréal)
Harvey Richer (UBC)
Kristine Spekkens (Royal Military College of Canada)
Luc Simard (Director General of NRC-HAA, non-voting, ex-officio)
Don Brooks (Executive Director of ACURA, non-voting, ex-officio)
Sara Ellison (CASCA President, non-voting, ex-officio)
Kim Venn (TIO Governing Board, non-voting, ex-officio)
Stan Metchev (TIO SAC, non-voting, ex-officio)
Tim Davidge (TIO SAC Canadian co-chair; NRC, observer)
Greg Fahlman (NRC, observer)

Graduate Student Highlights

par Carter Rhea (Chair, CASCA Graduate Student Committee)
(Cassiopeia – été 2020)

Each month, the GSC highlights the work of an outstanding Canadian graduate student by sharing their work with our members. Since the launch in February of 2020, we have highlighted four students from around the country.

Follow us on Twitter, Instagram, and Facebook under the handle casca_gsc.

Christian Thibeault — L’Université de Montréal

Les éruptions solaires sont des tempêtes de rayonnement provoquées par la libération d’énergie magnétique provenant de la couronne solaire. Ces éruptions posent un danger pour les astronautes et peuvent causer des perturbations importantes sur les communications satellites (incluant les systèmes GPS). Il a été proposé par E.T Lu et ses collaborateurs que les éruptions solaires sont le produit d’une réaction en chaîne inobservable de reconnexions magnétiques à petite échelle. Cette cascade de petits évènements peut être simulée avec un simple modèle sur réseau, appelé « modèle d’avalanche ». Le but de mon projet de maîtrise est d’évaluer le potentiel de ces modèles à faire des prédictions à court terme des éruptions solaires. Nous avons tout d’abord étudié le comportement stochastique de plusieurs modèles d’avalanche, et sommes maintenant en train d’intégrer l’assimilation de données sur des observations de rayon X (GOES) des éruptions solaires pour améliorer nos prédictions.

Figure 1 – Représentation imagée de l’interprétation physique d’une boucle coronale qui accumule de l’énergie par rotation de sa base. (Strugarek et al. 2014)

Mallory Thorp — University of Victoria

Comme une chercheuse en Astronomie, elle enquête comment changent-ils les galaxies au cause d’une fusion majeure galactique — ça se passe quand deux galaxies d’au peu près la même taille s’interagissent y se fusionnent en une unique galaxie. Pour meilleure comprendre ces changements d’un ordre de grandeur de quelques kiloparsecs, elle utilise les measures de la Spectroscopie de Champs Intégral (IFS – Integral Field Spectroscopy en anglais) d’enquête La Cartographie des Galaxies Proches à l’Observatoire d’Apache Point (MaNGA – Mapping Nearby Galaxies at Apache Point Observatory en anglais). L’IFS lui fournit une spectre pour chaque pixel d’une image d’une galaxie qui nous permet d’examiner comment les produits-de-données spectrales — comme le taux de formation stellaire (SFR — Stellar Formation Rate en anglais) — se changent à travers une galaxie.

On peut voir dans le figure 2 trois exemples de galaxies post-fusion de MaNGA (première colonne) et leurs cartes de densité surfacique de SFR (deuxième colonne). En comparant les cartes de SFR de galaxies post-fusion avec les galaxies isolées, nous pouvons quantifier le changement en SFR à la suite de fusion. La troisième colonne montre l’augmentation de SFR causée par une fusion en bleue, tandis qu’un déficit est visualisé en rouge. En moyenne, les galaxies post-fusion éprouvent une augmentation à travers la galaxie entière en SFR (voir les deuxième et troisième fusions). Les variations de ça, comme l’étouffement de SFR en les régions lointaines de la première galaxie post-fusion, peut-être indiquer comment les qualités progénitures distinctes et orientations modifient l’efficacité de la formation des étoiles.

Cette travaille-là était complétée par moi-même sous la direction de Sara Ellison (Nous deux sommes les membres de CASCA!)

Figure 2

Lingjian Chen — Saint Mary’s University

Dans ma recherche, j’étudie l’environnement galactique. Les environnements denses, tels que les groupes et les amas de galaxies, sont formés, en partie, par les fusions hiérarchiques. La distribution de galaxies satellites nous indique comment les galaxies dans cet environnement évoluent.

Nous étudions la distribution radiale des satellites autour de galaxies centrales en utilisant les données de Hyper Suprime-Cam (HSC) Subaru Strategic Program (HSC-SSP) et le télescope de Canada-France-Hawaii (CFHT) Large Area U-band Deep Survey (CLAUDS). Grâce à cette région étendue, la photométrie de 6-bandes et la profondeur du survey, nous pouvons identifier plus que 5000 centres dans un décalage vers le rouge entre 0,3 et 0,9. En plus, nous pouvons identifier les satellites qui sont en orbite autour de galaxies centrales.

Nos résultats nous indiquent que la distribution de densité de satellites est bien décrite par un profil NFW (Navarro-Frenk-White 1995, qui est normalement utilisé pour décrire le profil de densité de matière sombre) en une échelle plus grande que 100 kiloparsec à un décalage vers le rouge bas (e.g. Tal +2012). Nous avons enquêté en plus la dépendance de la distribution entre les satellites et les propriétés de la galaxie centrale. Nous trouvons que le mécanisme qui forme la distribution de satellites est relié fortement au frottement dynamique et le décapage des étoiles. Cependant, on a besoin de faire plus de simulations détaillées.

Le figure 3 démontre les galaxies de type satellite. La galaxie centrale est indiquée par un cercle jaune, les galaxies de type satellite potentielles sont indiquées par un cercle vert, et le rayonnement de sélection est indiqué en rouge (700 kpc). Les galaxies centrales étaient identifiées par leur masse et les critère d’isolation. En utilisant la différence en photo-z et une région circulaire, on a choisi les galaxies de type satellite. Le numéro des galaxies de type satellite montré ici était corrigé par les objets de fond.

Figure 3

Le figure 4 montre la densité superficielle des galaxies de type satellites (la moyenne) autour une galaxie centrale après la correction pour les objets de fond. La ligne solid démarque la meilleur ajustement et peut être séparée en deux composantes: la composante NFW au grandes échelles et la composante Sersic au petites échelles.

Figure 4

Farbod Jahandar — L’Université de Montréal

Farbod Jahandar travaille à débrouiller les mystères chimiques de nos étoiles voisines. Pour faire ça, il étudie les observations à haute résolution des naines étoiles de type spectral M qui sont les étoiles les plus nombreuses dans notre galaxie et sont les étoiles les plus petites et les plus froides sur la séquence principale. Cette analyse a un impact puissant sur plusieurs domaines en astronomie; en particulier, ça nous permet de déterminer le rayon d’une exoplanète. Le rayon d’une exoplanète dépend sur le rayon de l’étoile hôte qui est une fonction de ses propriétés chimiques! Pour réussir, Farbod utilise les données à haute résolution proviennent de l’instrument SPIROU qui est situé sur le télescope Canada-France-Hawaii.

Puis, Farbod utilise les techniques diverses de la spectroscopie chimique sur les données obtenues pour calculer les abondances chimiques des éléments différents dans l’atmosphère des naines étoiles de type spectral M. Cela est important pour comprendre l’évolution chimique de ces étoiles. En plus, cette étude va contribuer fortement à améliorer les modèles synthétiques stellaires qui existent.

Figure 5

Conferences and Carbon Footprints

By / par Sharon Morsink (University of Alberta)
(Cassiopeia – Summer / été 2020)

Authors: CASCA’s Sustainability Committee and Associates:
Sharon Morsink, Nicolas Cowan, Dennis Crabtree, Michael De Robertis, René Doyon, Vincent Henault-Brunet, Roland Kothes, David Lafrenière, Martine Lokken, Peter Martin, Christopher Matzner, Magdalen Normandeau, Nathalie Ouellette, Mubdi Rahman, Michael Reid, Joel Roediger, James Taylor, Robert Thacker, Marten van Kerkwijk

Canadians are responsible for CO2 emissions that are more than three times the annual global average of 4.8 tonnes per capita [1]. Most Canadian astronomers’ professional carbon footprint is dominated by air travel, and unlike telescope construction or rocket launches, flights — especially to conferences — are the immediate product of our individual choices. To reduce the environmental costs of our profession, we need real and desirable alternatives to jetting around to distant conferences.

Back in February, CASCA’s new Sustainability Committee was planning a virtual session for this year’s Annual General Meeting. But when the York meeting was cancelled due to the pandemic, an Online Organizing Committee was quickly assembled to plan a fully virtual conference. May’s online AGM, which was based around electronic posters and pre-recorded prize talks and community updates, drew 336 participants. We estimate that if everyone who participated from outside Ontario had flown in, the equivalent CO2 emissions would have been about 130 tonnes. (This may be an overestimate, as 43 respondents indicated on an exit survey that they would not have attended the in-person conference.)

The 2020 AGM was an interesting experiment, but how do we move forward? We aren’t advocating that all future conferences be completely virtual; we too would miss interacting with colleagues in person from time to time! Instead we would like to see the virtual options enhanced. We envision a future in which one would travel only to nearby conferences, and join remotely in most other cases. In the AGM exit survey (40% participation), about 60% of respondents reported missing the interactions that occur in person. Clearly, there is much work to be done to find effective and enjoyable ways to interact online with colleagues, but with improving text, video, and virtual reality options we believe this is possible. For instance, one could consider simultaneous physical meeting `hubs’ connected by a virtual link. Taking these points into consideration, the 2021 AGM organizers are already planning both in-person and remote ways to participate.

We encourage all astronomers to carefully consider how to minimize the impact of their research-related travel. In addition to being more selective about which conferences and meetings to attend in person, we recommend purchasing carbon offsets for those times when travel is needed. Not all institutions allow offsets to be reimbursed, and current NSERC spending rules for Discovery grants do not. Persistent advocacy is needed to change these policies, something which the Sustainability Committee will pursue. It is time for us to consider the environmental impact of our research, take stock of our own emissions, and plan a professional carbon budget in the same way that we plan a financial budget when managing our research grants.

[1] Hannah Ritchie and Max Roser (2017) – « CO₂ and Greenhouse Gas Emissions ». Published online at OurWorldInData.org.

CASCA’s New Sustainability Committee

By / par Chris Matzner (University of Toronto)
(Cassiopeia – Summer / été 2020)

Canada declared a national climate emergency a year ago and astronomy, like every profession, is beginning to face the challenge posed by the global climate crisis.  The problem is both an ethical and a practical one.  Ethically, we must recognize that the impacts of global heating – to which our professional activities contribute – will be the worst for those who have contributed the least to the problem:  the poor and marginalized in our own society, the Global South, and future generations worldwide.  Practically, we must find ways to live up to the commitments set out in the Paris Agreement: to cut greenhouse gas emissions in half by 2030, and reach net-zero by 2050 in order to avert irreversible and catastrophic climate change (ipcc).  

As members of CASCA’s new ad-hoc Sustainability Committee, our mandate is to encourage all Canadian astronomers to evaluate the environmental impacts of the practices of astronomy; to work with you on reducing them; and to provide sustainability-related resources for those engaged in teaching and outreach.  The Committee was created by the CASCA Board in early 2020, in response to the LRP white paper Astronomy in a Low-Carbon Future.  Its membership was drawn initially from that paper’s authors, with those involved in organizing the online version of the 2020 Annual General Meeting joining shortly thereafter. 

Now that the online AGM is over, we will work to: 

  • Plan and promote a virtual component to the 2021 AGM and other meetings to help members reduce their travel-related emissions;
  •  


  • Encourage and assist our fellow astronomers, and their institutions, to consider, track, review, and reduce their environmental impacts;
  •   


  • Build relationships with cognate committees in other fields and elsewhere in the world;
  •   


  • Advocate for changes in granting rules to acknowledge the environmental costs of doing research and permit climate-related costs like carbon offsets as eligible research expenses; and

  • Collect resources for effective astronomy teaching and outreach on topics related to sustainability and climate change.

  

We’re looking forward to engaging with you!  If you would like to get involved and join our roughly bi-monthly virtual meetings, please contact the committee chair, Chris Matzner.  

Sincerely yours, 

CASCA’s Sustainability Committee and Associates: Christopher Matzner, Nicolas Cowan, Dennis Crabtree, Michael De Robertis, René Doyon, Vincent Henault-Brunet, Roland Kothes, David Lafrenière, Martine Lokken, Peter Martin, Sharon Morsink, Magdalen Normandeau, Nathalie Ouellette, Mubdi Rahman, Michael Reid, Joel Roediger, James Taylor, Robert Thacker, Marten van Kerkwijk

CATAC Update on the Thirty Meter Telescope

By / par Michael Balogh (CATAC Chair)
(Cassiopeia – Summer / été 2020)

CATAC is very pleased to see that the exposure draft of the Long Range Plan (LRP), presented at the virtual CASCA meeting at the end of May, recognizes the importance of access to a Very Large Optical Telescope capability, ranking it first among large, ground-based projects. The Thirty Meter Telescope project remains Canada’s best opportunity to retain a leadership role and significant scientific share within such a facility. The continued delays to the project are disappointing for all, but we remain fully committed to TMT and to doing our part to help it succeed. Indeed, there are reasons to be optimistic for a successful and competitive completion of the project, as many people are working hard to find solutions to the current challenges. The project will be undergoing full Schedule and Cost Reviews in late summer / early fall. Until this process is complete, it is premature to speculate on the final cost of the project, or the effect of any revisions to previous estimates on Canada’s share.

Steady progress on the instrumentation suite is being made, notably with advances in the design of WFOS and refinement of MODHIS specifications. The India TMT Optical Fabrication Facility (ITOFF) at the Indian Institute of Astrophysics campus near Bengaluru recently completed construction. Construction is also underway at HAA in Victoria on a new instrumentation integration and testing facility. The first occupant of this building will be NFIRAOS, where it will be coupled with IRIS. The structure is large enough to accommodate the largest instruments envisioned for ELT-class telescopes. Some of these future instrument concepts are nearly as large as an 8-m class telescope.

The State of Hawaii has established a Working Group, to engage all the stakeholders in Hawaii in discussions on broad issues such as land use, housing, health and education. This group is actively exploring whether or not a form of reconciliation is possible. Astronomy on Maunakea is part of these discussions, which are following a process well aligned with some of the publicly available whitepapers submitted to the LRP panel, including Canadian Astronomy on Maunakea: On Respecting Indigenous Rights and Indigenizing the next decade of astronomy in Canada. As those involved work to build the trust needed to proceed, it is important that they be allowed to speak freely, frankly and honestly with each other; this is best done, initially, in a confidential setting.

The TMT Science Advisory Committee has struck a subcommittee to consider the latest and most complete information available on site quality at Observatorio del Roque de los Muchachos (ORM), Canary Islands, to ensure the TIO Members are fully informed. They are using the previous CATAC report as input, as well as a new report being prepared by the Japanese partner which considers additional (historical) site testing data. As noted in previous reports, there are also significant political, financial, environmental and social challenges associated with building on ORM that mean it is not straightforward to move to this alternate site.

Upcoming Events

We had hoped that the next TMT Science Forum would be held in May, 2021 in Vancouver. However, given the likelihood that travel and gatherings are still likely to be severely restricted at that time, it is probable that this meeting will be postponed until 2022. Unfortunately, this year’s TMT Early Careers Workshop at HAA also had to be cancelled.

The TMT project expects to hold a public webinar in the near future, to report on the findings of the working group investigating the site characteristics of ORM, relative to MK13N. The date for this meeting has not yet been set, but CATAC will make sure this is appropriately advertised via the CASCA email list.

CATAC membership:
Michael Balogh (University of Waterloo), Chair, mbalogh@uwaterloo.ca
Bob Abraham (University of Toronto; TIO SAC)
Stefi Baum (University of Manitoba)
Laura Ferrarese (NRC)
David Lafrenière (Université de Montréal)
Harvey Richer (UBC)
Kristine Spekkens (Royal Military College of Canada)
Luc Simard (Director General of NRC-HAA, non-voting, ex-officio)
Don Brooks (Executive Director of ACURA, non-voting, ex-officio)
Sara Ellison (CASCA President, non-voting, ex-officio)
Kim Venn (TIO Governing Board, non-voting, ex-officio)
Stan Metchev (TIO SAC, non-voting, ex-officio)
Tim Davidge (TIO SAC Canadian co-chair; NRC, observer)
Greg Fahlman (NRC, observer)

Long Range Plan 2020

de Pauline Barmby, Bryan Gaensler (LRP2020 co-présidents PLT2020)
(Cassiopeia – été 2020)

De mars à mai 2020, le panel PLT2020 a achevé une série de consultations, aboutissant à la publication d’un ensemble de projets de recommandations puis une discussion communautaire via Zoom lors de l’AGA CASCA 2020. Nous sommes reconnaissants pour tous les commentaires réfléchis reçus à la fois lors de la session de discussion et via le formulaire de commentaires.

Les plans futurs consistent à intégrer ces commentaires, à contacter des individus ou des groupes spécifiques pour obtenir des clarifications et à compléter le rapport, y compris les sections d’introduction et de conclusion. La version du rapport LRP que nous prévoyons publier à l’automne sera presque définitive; nous ne prévoyons pas de nouvelle série de consultations communautaires. La version finale du rapport sera disponible en anglais et en français à la fin de l’année. Afin que nous puissions terminer le rapport d’ici l’automne, nous aimerions recevoir vos commentaires d’ici le 30 juin 2020 au formulaire ci-dessus.

La page Web LRP contient un lien vers l’ébauche du document de recommandations – voir votre courriel CASCA pour le mot de passe – ainsi qu’une nouvelle page avec des liens vers tous les livres blancs et rapports PLT2020. Les livres blancs sont désormais également indexés dans ADS.

Les dernières nouvelles sur PLT2020 sont disponibles sur l’espace de travail Slack et sur Twitter @LRP2020. Le panel peut être contacté à panel@lrp2020.groups.io et les co-présidents à chairs@lrp2020.groups.io.