Carman Costain (former president of CASCA) Biography

par Alan Bridle (NRAO, retired)
(Cassiopeia – hiver 2022)

Carman Hudson Costain was born on April 26, 1932 in Saskatoon, Saskatchewan, Canada.  He was the fifth child and third son of Canadian-born Henry Hudson Costain and American-born Mary Elida Ekin.  Henry Hudson Costain was the son of a Prince Edward Island farmer. The Costain ancestry can be traced to a John Costain who emigrated to Prince Edward Island from the Isle of Man in 1832.

Carman first became interested in electronics as a hobby while in high school in Saskatoon.  He had summer jobs working on auroral radar backscatter studies – a specialty at the University of Saskatchewan owing to its high geomagnetic latitude and the influence there of radar and atmospheric researcher Peter Forsyth, who at times employed both Carman and his elder brother Cecil as undergraduate assistants.

Carman received his Bachelor’s degree in Physics from the University of Saskatchewan in 1953.  His interest in radio astronomy began that summer when he took a temporary job with Forsyth (who was then at the Defense Research Telecommunications Establishment at Shirley Bay near Ottawa) to construct a phase-switched two-dipole interferometer to monitor the ionospheric scintillations of the bright radio source Cassiopeia A.    After spending that summer in Ottawa Carman returned to Saskatoon for his Master’s studies.  He built another phase switched interferometer there in order to study ionospheric scintillation of Cassiopeia A at both upper and lower culmination.   Nine months of data collected there formed the basis for his Master’s degree but  (as he recounted in a 1974 tape-recorded interview with Woody Sullivan that is available online in the NRAO historical archives) this experiment made him more curious about radio astronomy itself than about using radio sources to study the ionosphere.

In 1955 it was not possible for a Canadian to do Ph.D. thesis work in radio astronomy within Canada.  After considering possibilities for working in radio astronomy at Jodrell Bank in England, at the University of Sydney in Australia, or for doing upper atmosphere research at Cornell University, Carman decided to follow his elder brother Cecil’s path by doing his Ph.D. In England at Cambridge University, where he was accepted into the radio astronomy group at the Cavendish Laboratory.   (His college affiliation was with St. John’s.)

Carman married Martha Leona “Lee” Leopold in Saskatoon on September 5, 1955.  Later that month the newlyweds crossed the Atlantic on the Canadian Pacific liner “Empress of Scotland”.  Carman immediately began graduate work in the Cambridge radio astronomy group headed by Martin Ryle, under the direct supervision of Francis Graham-Smith.

His first project at Cambridge was to set up an interferometer to monitor the November 1955 lunar occultations of the Crab Nebula.  Those observations proved problematic, but the experience he gained led to successful observations of the occultation that followed in January 1956 and to Carman’s first radio astronomy paper: “Radio Observations of a Lunar Occultation of the Crab Nebula” with Bruce Elsmore and George Whitfield, published in the Monthly Notices of the Royal Astronomical Society, Vol. 116, pp.380-385 (1956).

Carman’s early work at Cambridge was done at the old Rifle Range observing site off Grange Road.  In 1957 the Cavendish Laboratory’s acquisition of a much larger site 8 km south-west of Cambridge at the former Lord’s Bridge Air Ammunition Park made possible the project that became the main part of his Ph.D. thesis – a large telescope designed to survey the whole northern sky at 38 MHz.  His earlier attempt to study the galactic emission at this frequency with an antenna at the Rifle Range that had been used for solar studies by John Blythe in 1954 showed that the structure of the emission was too complex to be mapped adequately with that antenna.   A plan was therefore made to build a dedicated corner-reflector array to map the galactic emission and discrete sources at 38 MHz at the new site.  The then-novel approach was to combine data from many interferometer baselines between a long East-West corner reflector array and a smaller “portable” corner reflector segment that could be moved to many locations in the North-South direction.  This approach was an early example of the radio image-forming method known as “aperture synthesis”, for which Martin Ryle was awarded the Nobel Prize for Physics in 1974.

The 3300-ft East-West arm of the 38-MHz aperture synthesis telescope built by Carman Costain at Lord’s Bridge (Photo credit – Alan Bridle)


In 1956 Carman extended his stay in Cambridge for three more years in order to design, build and commission the 38-MHz aperture synthesis array under Graham-Smith’s supervision.   He also made the first observations with it, including a scaled-array study of the galactic radio spectrum.  At Martin Ryle’s urging he also looked into the feasibility of using those data to estimate the integrated extragalactic nonthermal background brightness. That quantity was significant for the cosmological
interpretation of Ryle’s radio source counts at the time of his famous dispute with Fred Hoyle over using the counts as evidence against the Steady State Theory.  (I inherited this task with a mandate to extend Carman’s analysis to lower frequencies as part of my Ph.D. Thesis.)  Carman also made a preliminary study of the North Galactic Spur, which remained a feature of great interest to him.  The all-sky survey was completed and published in 1966 by Phil Williams, Sidney Kenderdine and John Baldwin (“A Survey of Radio Sources and Background Radiation at 38 Mc/s”, Memoirs of the Royal Astronomical Society, vol. 76, pp. 53-110).

A significant diversion to Carman’s work on the 38-MHz survey occurred when Sputnik One was launched into Earth orbit on October 4 1957,  He dropped all else he was doing to work night and day with Bruce Elsmore and George Whitfield to improvise a way to detect Sputnik’s radio signals and thus to study the satellite’s orbital decay.  He later recalled that feverish effort with satisfaction as an example of the teamwork that existed among the Cambridge radio astronomy students and staff at the time.

Teamwork was also needed to provide the motive power for the moving corner reflector element of his 38-MHz antenna at Lord’s Bridge, which had to be manually carried from one interferometer station to the next. This was a strenuous task that I was told only Carman himself ever accomplished unaided.  More often, a group of students with strong backs went out to Lord’s Bridge from the Cavendish Lab to hoist and move the traveling corner reflector, a procedure that was artfully acknowledged in the final survey paper in 1966 – which remarked that “Through the unstinting exertions of all members of the radio astronomy group both past and present the observations were carried to a successful conclusion.”

The ad hoc response to the Sputnik launch may have contributed to the fact that Carman and Lee returned to Canada in 1959, with their son David – born in Cambridge in 1958 – before Carman had finished writing his Ph.D. thesis.   He joined the newly formed Dominion Radio Astrophysical Observatory (DRAO) upon his return to Canada in 1959, finished his thesis, and received his Ph.D. – the first awarded in radio astronomy to any Canadian – in 1960.

While acting as my local Ph.D. supervisor during my secondment to the DRAO from the Cavendish Laboratory in 1965/66, Carman urged me to complete as soon as possible: “Write only what you need to get your degree as fast as you can, so you can get on with your own science” was his advice.  I suspect that sentiment stemmed from his experience of finishing a Ph.D. thesis while simultaneously starting his professional research career and raising a young family – which grew to include second son Robin, daughter Leslie and third son Philip.

Once at the DRAO, Carman worked with the new observatory’s 25-m single dish while starting to plan for his major project – a T-shaped dipole array to survey the galactic radio emission and measure discrete radio source flux densities at 22 MHz with about one degree angular resolution.

John Bolton, Carman Costain and John Galt at the completed 22 MHz array in January 1965
(Photo credit: The Locke Family / NRC, DRAO Archive)


Unlike his 38-MHz synthesis array in Cambridge, the new 22-MHz array at DRAO was a filled-T configuration in which 624 full-wave dipoles provided all of the interferometer spacings between the 1.3-km East West arm and the 440-m North-South arm simultaneously, This configuration allowed the meridian transit pencil beam to be formed in real time so that  periods of quiescent ionospheric scintillation and refraction could be fully exploited.

The 22-MHz array was designed so that the signal from dipoles in the arm overlap region was fed into both the East-West and North-South arm transmission lines so that the largest-scale structure of the galactic emission would be represented as accurately as possible in the final survey data,  The array was completed in 1964 by Carman working with engineer David Lacey, radio astronomer Rob Roger and technician Jack Dawson.  Construction of the wooden support structure began in 1962 but the transmission lines, phasing networks and electronics were a hands-on effort by the four array staff members.

Preliminary observations with it showed that ionospheric conditions over Penticton were even more favorable for decametic radio astronomy than had been anticipated, so in 1964 it was decided to build a second T-shaped array at the DRAO to map the galaxy and to study discrete sources at 10 MHz.  That project was headed by John Galt, who then worked with a series of staff seconded to the DRAO in various ways from the Cavendish Laboratory – Peter Scheuer in 1964, Chris Purton in 1964-65, me in 1965-66, and Jim Caswell in 1967-69.  Although Carman was not formally part of the 10-MHz array project, his deep understanding of how the ionosphere affected decametric radio observing, and his mentoring of the younger contingent from Cambridge (especially me) who were directly involved in it, were important to its success.

The 22-MHz array began to take data at a time before digital computers were ubiquitous in radio astronomy.  Data reduction for its unique data product – the all-sky survey – was done at first in remote computers in Vancouver and in Ottawa.  Unfortunately, this meant that the survey data reduction proceeded only very slowly until the DRAO acquired its own on-site computer(s).

One unexpected result was, however, evident from direct visual inspection of the 22-MHz project’s real-time chart records:  a few of the discrete sources appeared brighter than expected from their higher-frequency spectra, implying that their low-frequency emission is enhanced by steep-spectrum components.  In particular, the 22-MHz emission from the Coma Cluster had an (apparently) extended component that was not then known from observations at higher frequencies.  While the resolution of the 22-MHz array was insufficient to show whether this steep-spectrum component was in fact a single extended emission region or a blend of several discrete sources, it sparked Carman’s interest in how extragalactic sources in rich clusters of galaxies might evolve to have steeper spectra than those in other environments.  I recall many long winter nights spent with him at the DRAO in 1966 discussing  astrophysical issues that have since been clarified by direct imaging of steep-spectrum “tails” and “relics” in galaxy clusters by a new generation of low-frequency arrays.

One example of the 22-MHz survey identifying what would become a seminal object for this emerging field of study was the recognition that a previously known but unremarkable radio source in the direction of the galaxy cluster Abell 2256 was unexpectedly bright on the 22-MHz survey chart records (Costain, C.H., Bridle, A.H. and Feldman, P.A. “Decametric Radio Identification of an Extragalactic X-ray Source”, Astrophysical .Journal,  vol.175, pp. L15-L18 (1972)) .  Abell 2256 has since been shown to be a merger product – and 50 years later its complex low-frequency radio emission is the “poster child” for studies of interactions between the ejecta of radio galaxies and magnetic fields in the hot intracluster gas (see, for example,  Breuer et al.,The Mergers in Abell 2256: Displaced Gas and its Connection to the Radio-emitting Plasma”, Monthly Notices of the Royal Astronomical Society, vol.495, pp. 5014-5026 (2020) and Rajpurohit et al. “Deep Low frequency Radio Observations of Abell 2256  I . The Filametary Radio Relic”, Astrophysical Journal, vol.927, pp. 80-101 (2022)).

Carman was inspirationally enthusiastic about all aspects of low-frequency radio astronomy, ranging from the theory and design of the array antennas, to understanding the effects of the ionosphere on the data, to handling the demanding computational needs of aperture synthesis, to exploring the astrophysics of the classes of cosmic radio source to which low-frequency instruments are especially sensitive.

The 22-MHz array’s sky survey was finally fully reduced and published in 1999, ten years after Carman’s untimely death (Roger, R.S., Costain, C.H., Landecker, T.L., and Swerdlyk, C.M., “The Radio Emission from the Galaxy at 22 MHz”, Astronomy and Astrophysics Supplements, vol.137, pp 7-19).

In the early 1970’s Carman turned his attention to the DRAO’s 21-cm hydrogen-line Synthesis Telescope which grew from three 8.5-m paraboloids (two moveable along on an East-West track) to become its next major instrument, eventually with seven elements.  Carman played a leading role in this telescope’s design and also in the development of the software necessary for its successful operation.

He also became active in the leadership of the Canadian Astronomical Society from 1974 to 1982, serving on its Board of Directors and then becoming its President from 1978 to 1980.  During that period and thereafter, he promoted the concept of a Canadian Long Baseline Array (CLBA), a project intended to provide a set of antennas all across Canada dedicated to the science of very-long-baseline interferometry, an active research field that had been pioneered by staff at the National Research Council (NRC) and in several Canadian universities.  This ambitious project eventually reached the highest priority for funding by the NRC, but the federal government nevertheless declined to fund it, thereby ceding the field to the Very Long Baseline Array (VLBA) operated by the U.S. National Radio Astronomy Observatory (NRAO).

In 1984 Carman was called to Ottawa to assist with a proposed upgrade of the 46·m radio telescope at the Algonquin Radio Observatory (ARO) for use at mm wavelengths.  While there he worked on using holography to measure the surface figure of the reflector to an accuracy of a few tenths of a millimeter – but in 1986 the upgrade project was abruptly terminated by budget cuts and ARO was closed as a national radio astronomy facility.  Carman then returned to DRAO to develop improved imaging techniques for the Synthesis Telescope, a project he was working on at the time of his death on December 21, 1989.

Away from his professional career, Carman played an active role in the social life of Penticton as a member of the Penticton Rotary Club and as an avid golfer and curler.  His interest in electronics as a hobby extended to building his own color TV set, which he completed just in time to allow a large gathering to watch the Apollo 11 Moon landing at his and Lee’s house on 20 July 1969.

Carman Costain was a true pioneer of radio astronomy in Canada, and I am honored to have had him as my Ph.D. Thesis supervisor for the year that I spent at the DRAO in 1965/66.

Assistant Professor, Physics and Astronomy University of Waterloo

The Department of Physics and Astronomy in the Faculty of Science at the University of Waterloo invites applicants for a tenure-track position at the Assistant Professor level. A broad range of areas will be considered including, Astrophysics, Quantum Matter, Photonics, Biophysics, and Soft Matter. Applications from outstanding candidates in other areas will be considered. The anticipated start date is September 1, 2023.

We are seeking applications from theorists and/or experimentalists. A Ph.D. degree and evidence of outstanding promise in research and teaching are required. Successful applicants are expected to develop and maintain a research program of exceptional quality and impact, to attract and supervise graduate students, to attract external funding at the level required to maintain a thriving research group, and to teach at the undergraduate and graduate levels. The salary range is $105,000 to $125,000, depending on experience. Negotiations beyond this salary range will be considered for exceptionally qualified candidates.

Candidates should submit electronically a curriculum vitae, an outline of research accomplishments, a brief research plan, a statement of teaching philosophy and goals, and make arrangements for four letters of reference to be sent to Professor Brian McNamara, Chair, Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1. Telephone: (519) 888-4567; extension 36831; e-mail: physics@uwaterloo.ca. Materials should be received by January 15, 2023.  Further information about the Department can be found on our web page: https://uwaterloo.ca/physics-astronomy/

The University values the diverse and intersectional identities of its students, faculty, and staff.  The University regards equity and diversity as an integral part of academic excellence and is committed to accessibility for all employees. The University of Waterloo seeks applicants who embrace our values of equity, anti-racism and inclusion. As such, we encourage applications from candidates who have been historically disadvantaged and marginalized, including applicants who identify as Indigenous peoples (e.g., First Nations, Metis, Inuit/Inuk), Black, racialized, people with disabilities, women and/or 2SLGBTQ+.

The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is centralized within our Indigenous Initiatives Office (https://uwaterloo.ca/human-rights-equity-inclusion/indigenousinitiatives).

The University of Waterloo is committed to accessibility for persons with disabilities. If you have any questions regarding the position, the application process, assessment process, eligibility, or a request for accommodation during the hiring process, please contact Dr. Brian McNamara, Chair, Department of Physics and Astronomy, University of Waterloo, Telephone: (519) 888-4567; extension 36831; E-mail: physics@uwaterloo.ca.

All qualified candidates are encouraged to apply; however, Canadians and permanent residents will be given priority.

Three reasons to apply: https://uwaterloo.ca/faculty-association/why-waterloo.

Transfer complete!

So I’ve run all of the tests I can think of and this morning’s transfer of the site to a new machine seems to have finished with only one small side-effect: some e-mail clients for the @casca.ca domain addresses seem to think that the last week of e-mail reading didn’t happen and so you’ll have to, alas, reread some mail if this happens to you. Other than that everything seems to be just as it was before the move.

If you have any questions or concerns about the move feel free to contact me at webmaster at casca.ca.

Scheduled site maintenance morning of November 9th

Your friendly neighbourhood webmaster here.

Our ISP informs me that, at some random moment during the morning (EDT) of Wednesday, November 9th all of our stuff will be moved to a shiny new machine. This means some downtime as the new machine is at a new address (IP Address that is):

Schedule (all times EDT):

  • Around 5 pm on the 8th I will make a full backup of the site and back that up (encrypted) on one of my own systems separate from those of the ISP. Probably nothing will be lost in the transfer to the new machine but if it is everything up to that point can certainly be restored
  • Late on the night of the 8th I will set the site’s address to the new coördinates. This means that until the move is complete (perhaps just after midnight; perhaps around noon) attempts to reach the site or any of its facilities will fail.
  • When the transfer is complete the site should be reachable and everything as it was before the move. A post to that effect will be posted on the site, tagged CASCA In the news, so that you can tell that you’re seeing the newest version of the site and not some cached version of the old one.
  • If something does go wrong a mass mailing to the general membership will be made outlining the situation. Our mass mailing system is on a completely different system than the website and should not be affected by the move.

Other changes

  • If you have FTP access to the site note that the new address of the FTP servers will be http://mtlp1.greengeeks.net/
  • People who’ve been on the system for a long time may have the address http://mtl-pnode1.websitehostserver.net/ set as the address of the e-mail server they use with their @casca.ca e-mail address. This may not continue to work. The better address to use is mail.casca.ca.
  • If you wish to contact me to help with e-mail problems encountered after the move it is possible that I’m having the same problems so my regular address of webmaster at casca.ca may not work! CC such requests to witheringsnodgrass at gmail.com

Professeur Christine Wilson remporte le Prix Exécutif 2022

Tous les deux ans, le conseil d’administration de la CASCA a l’honneur de décerner le prix exécutif pour service exceptionnel « à une personne qui a contribué de façon soutenue à renforcer la communauté astronomique canadienne et à accroître son impact au niveau régional, national et/ou international ». La professeure Christine Wilson, de l’Université McMaster, est la récipiendaire du prix exécutif 2022.

L’engagement exceptionnel de Dre Wilson envers la communauté astronomique canadienne a été évident dès le début de sa carrière. Après son retour au Canada pour occuper un poste de professeure à l’Université McMaster en 1992, elle a immédiatement contribué à plusieurs comités clés, y compris un comité du CNRC sur une nouvelle installation radio nationale, et a été nommée à un poste de directrice de la CASCA en 1996. Au cours des décennies suivantes, elle a siégé à de nombreux comités de la CASCA, dont un comité d’examen à mi-parcours, occupant souvent des postes simultanément, ainsi que la vice-présidence en 2012-2014 et la présidence en 2014-2016. Plus récemment, le professeure Wilson a présidé le comité de mise en œuvre des recommandations communautaires du plan à long terme de la CASCA (LCRIC).

Dans le domaine de l’astronomie submm, sa réputation d’excellence en recherche ainsi que ses compétences en gestion largement reconnues l’ont amenée à assumer des rôles de leadership clés pour les intérêts scientifiques et logiciels canadiens dans le projet ALMA. Elle a été scientifique canadienne du projet ALMA de 1999 à 2011, présidente du comité directeur scientifique canadien de l’ALMA de 2001 à 2010, ainsi que membre de quatre autres comités et conseils clés de l’ALMA. S’il ne fait aucun doute que ALMA est le fruit d’un important travail d’équipe, ses efforts ont été essentiels pour faire de ALMA le grand succès qu’il est, tant du point de vue de la collaboration canadienne qu’internationale.

Pendant trois décennies, le Dre Christine Wilson a été un modèle et une ambassadrice engagée de l’astronomie au Canada. En lui décernant ce prix au nom de la communauté astronomique canadienne, le conseil d’administration de la CASCA reconnaît sa contribution essentielle à la communauté professionnelle canadienne et internationale, et lui adresse ses plus sincères remerciements.

Dr. JJ Kavelaars: 2022 Dunlap Award for Innovation in Astronomical Research Tools

CASCA is pleased to announce that Dr. JJ Kavelaars is the winner of the 2022 Dunlap Award.  This award recognizes his leadership at the Canadian Astronomy Data Centre.  Over the past five years in which Dr. Kavelaars has been head of the CADC, it has provided public access to its largest number of telescope archival datasets, expanded a key initiative to bring high-performance distributed cloud computing services to Canadian astronomers via the Canadian Advanced Network for Astronomical Research (CANFAR), and laid the groundwork for new archives and processing environments for the upcoming JWST, Vera C. Rubin Observatory, and the Square Kilometre Array.  He received his PhD from Queen’s University, followed by a postdoctoral fellowship at McMaster University.  He is now a Senior Research Officer at NRC-Herzberg in Victoria as well as an adjunct professor at UVic, where in addition to leading the CADC, he continues to make groundbreaking discoveries in the Kuiper Belt using ground and space-based telescopes as well as being a part of the New Horizons Mission team.

Dr Anthony Moffat: 2022 Prix Carlyle S. Beals pour recherche exceptionnelle

La CASCA est heureuse d’annoncer que le Dr Anthony Moffat est le lauréat du prix Beals 2022. Ce prix récompense des décennies de recherche de pointe sur des sujets liés aux étoiles massives, notamment les étoiles Wolf-Rayet, les pulsations stellaires, la rotation, les champs magnétiques, les surdensités dans les vents stellaires, les systèmes binaires, les amas stellaires et les relevés d’étoiles massives. La plupart d’entre nous ont utilisé un profil Moffat: c’était son travail!  Titulaire d’un doctorat en astronomie de la Ruhr-Universitaet Bochum en Allemagne, il est depuis lors professeur à l’Université de Montréal et n’a pas ralenti sa production de recherche depuis qu’il est devenu Professeur émérite. Il a formé des générations de scientifiques qui travaillent encore au Canada et à l’étranger.  Il reste très actif dans la recherche sur les étoiles massives et les projets d’astronomie comme la constellation BRITE.

Dr Deborah Good: 2022 Médaille J. S. Plaskett pour la thèse de doctorat la plus remarquable

La CASCA a le plaisir d’annoncer que Dr Deborah Good est la lauréate de la médaille J.S. Plaskett 2022, qui récompense la thèse de doctorat la plus remarquable en astronomie ou en astrophysique. Dr Good a obtenu son doctorat en 2021 sous la direction de Dr Ingrid Stairs à l’Université de la Colombie-Britannique et elle est maintenant boursière postdoctorale à l’Université du Connecticut et au Flatiron Center for Computational Astrophysics. Sa thèse, « Timing Pulsars and Detecting Radio Transients with CHIME », comprend un travail novateur sur les premiers mois de détection de pulsars et de sursauts radio rapides avec CHIME. Pour mener à bien cette recherche, elle a mené des efforts au sein de l’équipe CHIME pour calibrer les instruments, développer des logiciels d’analyse, vérifier les détections, et elle est à la fine pointe de la recherche pour tenter de découvrir si oui ou non tous les sursauts radio rapides sont des événements récurrents. Elle a également recueilli des données sur les pulsars, découvert de nombreux nouveaux pulsars et adapté l’algorithme de réductions de données NANOGrav pour qu’il fonctionne avec les données CHIME, posant ainsi les bases du traitement des données qui sera nécessaire dans les prochaines années.

Nous tenons également à reconnaître les thèses exceptionnelles de tous les finalistes : Dr Connor Bottrell, Dr Ryan Chown, Dr Adam Gonzalez, et Dr Émilie Parent.

Dr Karun Thanjavur: Prix Qilak 2022 pour la communication en astronomie, l’éducation du public et la sensibilisation

La CASCA a le plaisir d’annoncer que le Dr Karun Thanjavur est le lauréat du prix Qilak 2022, qui récompense son travail exceptionnel de sensibilisation auprès d’un groupe diversifié, en particulier ses efforts pour mettre en relation les communautés autochtones de la province avec l’Université de Victoria. Parmi les projets qu’il a menés au cours des dernières années, citons de nombreux programmes permettant à des étudiants autochtones de suivre des cours d’astronomie, des laboratoires et des séances d’observation à l’observatoire de l’université. Il a également dirigé l’organisation de plusieurs activités lors de la CASCA 2018, qui ont permis de mettre en relation des gardiens du savoir autochtones locaux avec des membres de la CASCA. En plus de ces programmes axés sur les relations avec les autochtones, il apparaît régulièrement dans les médias et organise de nombreuses activités de sensibilisation du public avec l’observatoire de l’Université de Victoria. L’événement de l’éclipse solaire 2017 a connu un succès retentissant avec ~1500 participants. En plus d’encadrer des étudiants d’âges et de milieux très différents, il obtient chaque trimestre du temps d’observation sur le télescope Plaskett de l’Observatoire Fédéral d’Astrophysique, spécifiquement pour former et encadrer des étudiants de premier cycle. Dr Thanjavur a obtenu son doctorat à l’Université de Victoria et a occupé des postes allant de l’ingénierie maritime à l’enseignement de la robotique et de l’ingénierie de la combustion, en passant par l’instrumentation et un poste d’astronome résident au Télescope Canada-France-Hawaï. Il est actuellement instructeur principal de laboratoire à l’Université de Victoria.

Le Conseil national de recherches franchit une étape importante pour consolider le leadership international du Canada en astronomie

Le Canada signe un accord de coopération avec le SKA Observatory

29 novembre 2021 (OTTAWA) – Un nouvel accord de coopération signé aujourd’hui par le Conseil national de recherches du Canada (CNRC) pour poursuivre la participation du Canada au Square Kilometer Array Observatory (SKAO) contribue à consolider le leadership international du Canada en astronomie. L’un des plus grands projets scientifiques de l’histoire de l’humanité, SKAO sera le radiotélescope le plus puissant du monde.

La Coalition pour l’astronomie canadienne a salué cette annonce et remercié le CNRC et le ministre de l’Innovation, des Sciences et de l’Industrie, François-Philippe Champagne, pour le leadership dont ils ont fait preuve afin de conclure cet accord de coopération.

« Les astronomes canadiens sont régulièrement classés parmi les meilleurs au monde, et les recherches réalisées font de l’astronomie la science la plus importante au Canada. Connu pour avoir développé plusieurs technologies révolutionnaires en radioastronomie, le Canada est un partenaire du SKA depuis sa création. Aujourd’hui, nous faisons un pas de plus vers une participation à long terme dans un projet qui générera des découvertes remarquables pour les décennies à venir », a déclaré Rob Thacker, président de la Société canadienne d’astronomie et coprésident de la Coalition.

Le SKA sera construit au cours de la prochaine décennie et les premières opérations scientifiques débuteront à mi-chemin de la construction. Ce projet international combinera près de 200 radiotélescopes paraboliques en Afrique du Sud et connectera plus de 100 000 antennes basse fréquence en Australie. Le SKA disposera également de centres de données dans le monde entier, dont un potentiellement au Canada.  Le projet compte actuellement 16 pays partenaires.

Le SKA a été une des principales priorités de l’astronomie canadienne pendant plus de deux décennies, au fur et à mesure de sa progression dans les phases de conception et de design. Le projet est entré en phase de construction le 1er juillet de cette année.

« Le leadership continu du Canada en astronomie est directement lié à l’accès aux installations les plus avancées du monde. L’adhésion au SKAO est extrêmement importante pour pouvoir attirer et retenir les meilleurs chercheurs et étudiants en astronomie », a déclaré Don Brooks, directeur général de l’Association canadienne d’universités pour la recherche en astronomie et coprésident de la Coalition.

« L’industrie canadienne fournit depuis longtemps le savoir-faire nécessaire à la conception, à l’ingénierie et à la fabrication d’installations astronomiques mondiales de nouvelle génération, comme le SKA, ce qui entraîne des retombées dans toute une gamme d’industries. Cette annonce est non seulement une victoire pour la science canadienne, mais aussi une excellente nouvelle pour l’économie et les entreprises qui fourniront des composants essentiels au projet », a ajouté Guy Nelson, PDG de Dynamic Technologies Group et coprésident de la Coalition.

La Coalition espère que cette annonce conduira à la participation à long terme du Canada dans le SKA.

« Le SKA transformera notre compréhension de l’histoire, de la composition, des conditions extrêmes et des perspectives de la vie dans l’Univers », a déclaré Kristine Spekkens, directrice scientifique canadienne du SKA et professeure au Collège militaire royal et à Queen’s. « La recherche scientifique qui sera possible grâce au SKA s’aligne bien avec l’expertise des astronomes canadiens, qui seront à l’avant-garde de plusieurs de ses découvertes révolutionnaires. »

La Coalition soutient pleinement les objectifs du SKA en matière d’équité, de diversité et d’inclusion, ainsi que les efforts visant à former la prochaine génération de scientifiques et d’ingénieurs.

« Les découvertes scientifiques réalisées grâce au SKA inciteront une nouvelle génération de jeunes Canadiens à faire carrière dans les domaines des STIM. Guidée par les 15 recommandations de la communauté dans le Plan à long terme pour l’astronomie et l’astrophysique, la Coalition s’efforce d’accroître la participation et l’inclusion des communautés qui sont sous-représentées en astronomie », a déclaré Thacker.

À propos de la Coalition pour l’astronomie canadienne

La Coalition se compose :

  • Du milieu universitaire : représenté par l’Association canadienne d’universités pour la recherche en astronomie (ACURA) et ses 20 membres;
  • D’astronomes professionnels : représentés par la Société canadienne d’astronomie (CASCA);
  • D’industries : représentées par des entreprises canadiennes impliquées dans de grands projets d’astronomie.

La Coalition est unie derrière le Plan à long terme pour l’astronomie et l’astrophysique (PLT), un plan décennal lancé en 2000 et renouvelé en 2010 et 2020, qui vise à maintenir le leadership international du Canada en astronomie. Le succès du PLT, soutenu par la Coalition, a permis à l’astronomie d’être constamment classée comme la plus importante science du Canada et aux Canadiens d’être à l’avant-garde du domaine à l’international.

Contact :

Duncan Rayner, 613-241-6000, poste 223

duncan@tsa.ca