Update from the Canadian Space Agency (CSA) / Compte rendu de l’Agence spatiale canadienne (ASC)

By / par Denis Laurin (Scientifique principal de programme, astronomie spatiale,
Développement de l’exploration spatiale, Agence spatiale canadienne / Senior Program Scientist, Space Astronomy, Space Exploration Development, Canadian Space Agency)

(Cassiopeia – Autumn / l’automne 2019)

denis.laurin@canada.ca
(www.asc-csa.gc.ca/fra/sciences/astronomie.asp)
(www.asc-csa.gc.ca/eng/sciences/astronomy.asp)

The English version follows

Ma dernière contribution à Cassiopeia remonte à exactement un an et ce fut une année bien remplie. Plusieurs nouvelles initiatives de l’ASC en astronomie spatiale, ainsi que le soutien aux projets et missions en cours, sont décrits ci-dessous.

Missions en cours

JWST (Jean Dupuis)

L’AOP du 1er cycle sera publié le 23 janvier 2020 et la date limite de soumission des propositions est fixée au 1er mai 2020 (pour plus de détails, consultez la page Web de STScI). L’ASC supportera les chercheurs canadiens sélectionnés par le programme GO de la NASA. Les détails sur le mécanisme d’attribution des subventions de l’ASC seront fournis à temps pour le 1er cycle. Des activités sont prévues, avant la date limite de soumission du 1er cycle, afin d’aider les astronomes canadiens à préparer leurs propositions, par le biais d’ateliers et de webinaires. Des détails sur les activités et les horaires seront fournis à la communauté dans un proche avenir, par exemple par le biais du CASCA Exploder. Nous encourageons fortement les futurs utilisateurs de JWST à se familiariser avec les nombreux modes d’observation disponibles avec les instruments scientifiques du JWST, ainsi qu’avec tous les outils logiciels disponibles concernant la préparation de propositions.

L’ASC accorde des subventions (d’un montant maximum de 500K$, sur cinq ans chacun) à la préparation du programme GTO de l’équipe scientifique canadienne:

  • David Lafrenière, U. de Montreal, “NIRISS Guaranteed Time Observations (GTO) Program on Exoplanets Characterization”
  • Marcin Sawicki, St-Mary’s U., “Science Support for JWST’s Canadian NIRISS Unbiased Cluster Survey (CANUCS) – JWST GTO Program”

Le lancement du JWST est toujours prévu pour mars 2021. Une étape importante a récemment été franchie avec l’intégration de l’élément de télescope optique OTIS (OTE + ISIM) Optical Telescope Element and Integrated Science Instrument Module (décrit ici). Plusieurs examens critiques sont prévus jusqu’à l’année prochaine à Northrop Grumman (NGAS) en Californie, avant que l’observatoire ne soit finalement transporté au site de lancement en Guyane française. Pour des mises à jour et des nouvelles sur JWST, veuillez consulter les pages web de la NASA, du STScI et l’ASC.

Figure 1 – Le télescope spatial James Webb entièrement assemblé avec son pare-soleil, partiellement déployé dans une configuration ouverte. (Credit: NASA/Chris Gunn)

ASTROSAT (Jean Dupuis)

Les opérations ASTROSAT approchent la 4e année et de nombreux astronomes canadiens en ont bénéficié et ont produit des résultats grâce à cet observatoire unique. Les détails concernant le prochain appel de propositions d’observation devraient être publiés prochainement par l’ISRO. Le détecteur NUV d’UVIT n’est toujours pas disponible, mais les canaux FUV et VIS continuent de bien fonctionner. SVP contactez Joe Postma, U. de Calgary, pour les détails et assistance concernant le traitements de données et questions concernant vos préparation de propositions. Les observateurs canadiens qui ont obtenu du temps d’observation au cours des cycles précédents ont reçu une subvention de l’ASC (contactez Jean Dupuis à l’ASC concernant le programme de subvention ASTROSAT). Nous encourageons les bénéficiaires de subventions ASTROSAT à informer l’ASC de leurs publications, à paraître ou à venir, ainsi que de tous les communiqués de presse connexes.

L’ASC a accordé les subventions suivantes (maximum de 50K$ par subvention) aux utilisateurs d’ASTROSAT:

2017

  • Pat Coté, U. de Victoria / NRC, “UVIT Studies of Composite Stellar Systems in Cluster Environments”
  • Luigi Gallo, St-Mary’s U., “The connection between the accretion disk and corona in AGN with ASTROSAT”
  • Denis Leahy, U. de Calgary, “Analysis of Multi-wavelength ASTROSAT Observations of M31 and Hercules X-1”

2018

  • Carmelle Robert, U. Laval, “Young Stellar Populations in Nearby Galaxies with UVIT and SITELLE”
  • Gregory Sivakoff, U. d’Alberta, “ASTROSAT Accretion Disk Observations of the 2017 Outburst of the Black Hole X-ray Binary GX-339-4”
  • Denis Leahy, U. de Calgary, “ASTROSAT Multi-Wavelength Imaging Survey Of M31, Central and Northeast Regions”

NEOSSat programme d’observateurs invités

NEOSSat est un télescope spatial canadien. Semblable à MOST, il comprend une optique Maksutov de 15 cm, avec un « baffle » performant qui permet d’observer à des angles faibles du soleil. Il a été lancé en 2013 pour la recherche d’astéroïdes géocroiseurs. Le télescope est maintenant offert pour de nouvelles investigations scientifiques, telles que la photométrie ou la confirmation de nouveaux astéroïdes. A cette fin, l’ASC a affiché une AOP pour un programme d’observateurs invités. Le premier cycle de l’AOP est fermé, mais le prochain cycle sera offert bientôt. Il n’y a pas de subventions offertes avec ce AOP, les données seront publiques (sur le site FTP de l’ASC ou à partir de « Données ouvertes Canada »). Nous sommes en discussions avec le CADC pour y intégrer les données sur leur site dans un futur proche.

XRISM

La mission XRISM de JAXA prévue d’être lancée en 2021, sera un successeur de la mission Hitomi qui avait pris fin prématurément en 2016. L’ASC a contribué un support aux tests des instruments en développement de XRISM. Avec un support en subventions, Dr Luigi Gallo de l’université St-Mary’s et Dr Brian McNamara de l’université de Waterloo sont membres de l’équipe. Lorsque la mission sera en exploitation, les astronomes au Canada pourront s’inscrire à la compétition pour obtenir du temps d’observation.

BRITE

L’ASC continue à supporter les opérations du nanosatellite canadien BRITE avec le « Space Flight Laboratory » de l’UTIAS.

Investir dans l’avenir

Études conceptuelles et scientifiques de la l’ASC – développer des idées pour l’avenir

Plusieurs idées originales et analyses scientifiques en astronomie spatiale, allant des rayons X au CMB, en passant par les exoplanètes, ont fait l’objet d’études de concept de mission et de maturation scientifique soutenues par l’ASC au cours de la dernière année. Ces études démontrent la capacité d’innovation et le leadership scientifique du Canada.

Les contrats d’études sont le résultat d’un appel d’offres compétitif en 2018, qui abordait les priorités définies lors de l’atelier ACES 2016 et des équipes thématiques de l’ASC, décrites en détail dans le document final «2017: Exploration spatiale canadienne – Priorités en sciences et en santé spatiale pour la prochaine décennie et au-delà».

Les études d’astronomie spatiale sont énumérées ci-dessous. Toutes sont sur le point d’être terminées si elles ne le sont pas déjà, avec le chef scientifique entre parenthèses :

  • LiteBIRD, étude de contribution, McGill Univ. (Matt Dobbs), complété.
    La mission JAXA LiteBIRD consiste à détecter la polarisation dans le CMB. La contribution canadienne potentielle est l’électronique multiplexée de lecture pour les cryo-bolomètres.
  • CASTOR, maturation scientifique, Honeywell et CNRC (Pat Coté), complété.
    Un télescope spatial Vis-UV de 1 m piloté par le Canada pour des sondages cosmiques. Les rapports finaux ont fourni un examen complet des objectifs scientifiques et un concept de la mission.
  • Photometric Observations of Extrasolar Planets, maturation scientifique, Bishops’ Univ. (Jason Rowe), complété.
    Un concept basé sur le microsatellite MOST pour mesurer les transits d’exoplanètes dans différentes bandes afin de détecter leurs atmosphères. Des simulations ont déterminé une mission de base.
  • LiteBIRD, maturation scientifique, McGill (Matt Dobbs), prévu pour oct.
    La mission JAXA LiteBIRD consiste à détecter la polarisation dans le CMB. Cette étude appuie un plan plus détaillé pour les éléments scientifiques et la contribution potentielle.
  • Colibri (High-Resolution X-ray Telescope), étude de concept, UBC (Jeremy Heyl), prévu pour jan.
    Concept pour un télescope à rayons X à haute résolution temporelle et haute résolution énergétique, destiné à l’étude des étoiles à neutrons et à l’accrétion de trous noirs.
  • EPPE (Extrasolar Planet Polarimetry Explorer), étude de concept, Magellan et UWO (Stan Metchev), prévu pour nov.
    Mesures de haute précision dans le bleu au proche infrarouge pour déduire les attributs des atmosphères exoplanétaires, en utilisant la polarimétrie différentielle résolue dans le temps pour explorer les Jupiters chauds et les planètes semblables à la Terre.

(Il existe un nombre similaire d’études en exploration planétaire, également alignées sur les priorités décrites dans le rapport de l’ACES.)

Subventions aux cochercheurs – appui aux chercheurs canadiens sur des missions internationales

L’ASC reconnaît l’expertise existant dans le domaine des sciences spatiales au Canada, comme en témoignent les membres de la communauté qui sont invités à se joindre à des missions spatiales internationales. L’ASC avait publié une AOP, au début de 2019, pour support aux scientifiques en astronomie spatiale et en exploration planétaire possédant un rôle dans une équipe ou un consortium scientifique d’une mission étrangère. Conformément aux recommandations du JCSA et du PECC (comités de consultation sur l’astronomie spatiale et l’exploration planétaire, respectivement), ce AOP avait l’objectif de fournir aux membres de la communauté un soutien leur permettant de participer à des missions auxquelles l’ASC ne participe pas autrement. La première AOP a offert des subventions allant jusqu’à $100K sur deux ans. Les destinataires de ce concours sont (avec le nom de la mission entre parenthèses):

  • Catherine Johnson, UBC (InSight, Mars mission)
  • Will Percival, U. de Waterloo (Euclid mission)
  • Ed Cloutis, U. de Winnipeg (ExoMars)
  • JJ Kavelaars, U. de Victoria (New Horizons)
  • Douglas Scott, UBC (Euclid mission)
  • Livio Tornabene, UWO (ExoMars)
  • Jeremy Heyl, UBC (IXPE)
  • Lyle Whyte, McGill (ExoMars)

AOP pour subventions VITES

L’ASC annonce actuellement une AOP pour les subventions VITES 2019. Veuillez consulter la page Web de l’AOP pour plus de détails et la date limite de soumission.

Une liste complète des subventions octroyées du VITES 2017 est disponible sur cette page web. Les subventions suivantes, en astronomie spatiale, ont été octroyées:

Dans la catégorie de $400K:

  • Université de Toronto, “ Visible and Near-UV Wide-Field Imaging from the Stratosphere” Dr. B. Netterfield

Dans la catégorie de $200K:

  • Université McGill, “ High-Energy Light Isotope eXperiment (HELIX)”, Dr. D. Hanna
  • Université de Toronto, “Analysis of Cosmic Microwave Background Polarization Data from the Second Flight of the SPIDER Balloon-borne Telescope”, Dr. John Richard Bond
  • Université de Victoria, “Windows to Worlds: Science Readiness and Requirements for Small and Large Exoplanet Characterization Missions”, Dr. C. Goldblatt

Dans la catégorie de $100K:

  • UWO, “ Surveying the Best Hosts for Detecting Earth-like Extrasolar Planets”, Dr. S. Metchev

Développements technologiques

L’ASC soutient le développement de technologies pour des missions futures afin d’aider l’industrie à rester compétitive et prête. Dans le cadre du programme de développement technologique actuel (PDTS) l’ASC a annoncé son intention de soutenir les technologies liées à la mission SPICA de l’ESA et à la mission LiteBIRD de JAXA. En ce qui concerne la technologie SPICA, un contrat a été attribué à ABB (Québec) pour le mécanisme cryogénique du FTS. En ce qui concerne LiteBIRD, l’ADP ciblant les systèmes de lecture numériques pour l’espace est toujours ouverte au moment de la rédaction de cet article.

Consultations

PLT 2020 et une réunion publique à l’ASC le 31 octobre

Comme la plupart des lecteurs le savent, la CASCA a lancé des consultations relatives au plan à long terme. L’ASC est heureuse de soutenir ces activités et accueillera le comité du PLT et les membres de la communauté au siège social de l’ASC à St-Hubert le 31 octobre. Pour plus d’information concernant le PLT voir l’article de Pauline Barmby dans cette parution de Cassiopeia.

Le comité consultatif JCSA

Les membres de ce comité sont :
Jason Rowe, U. Bishop (co-Chair)
Denis Laurin, ASC (co-Chair)
Renée Hlozek, U. de Toronto
Locke Spencer, U. de Lethbridge
Chris Willott, NRC Herzberg
Daryl Haggard, McGill
Jeremy Heyl, UBC

La dernière rencontre a eu lieu durant la CASCA à Montréal. La prochaine réunion sera par téléconférence en novembre ou décembre 2019.
——————-
En vous souhaitant à tous un bel automne coloré,
Denis Laurin



My last contribution to Cassiopeia was exactly a year ago and it has been a busy year. Several new CSA initiatives in support of space astronomy, as well as support to on-going projects and missions, are described below.

On-going Missions

JWST (Jean Dupuis)

Cycle 1 call for proposals is to be released on Jan 23, 2020 with a proposal deadline of May 1, 2020 (see the STSci webpage for details). The CSA will support Canadian researchers successful in the NASA GO Program. Details on the mechanism for the CSA awards will be provided by the time of the Cycle 1 release. Activities are planned before the Cycle 1 proposal deadline that will assist interested Canadian astronomers in the preparation of their proposals, through possible workshops and webinars. Details on the activities and schedules will be provided to the community in the near future, such as through the CASCA Exploder. We strongly encourage the future users of JWST to become familiar with the numerous observation modes available with the suite of science instruments on-board JWST, as well as with all the software tools available for the preparation of proposals.

The CSA is providing grant support ($500K max, each, over 5 years) for the preparation of the GTO program of the Canadian science team:

  • David Lafrenière, U. de Montreal, “NIRISS Guaranteed Time Observations (GTO) Program on Exoplanets Characterization”
  • Marcin Sawicki, St-Mary’s U., “Science Support for JWST’s Canadian NIRISS Unbiased Cluster Survey (CANUCS) – JWST GTO Program”

The JWST launch remains scheduled for March 2021. A major milestone was reached recently with the integration of the OTIS (OTE+ISIM) Optical Telescope Element and Integrated Science Instrument Module (described here). Several more critical tests are planned through to the next year at Northrop Grumman (NGAS) in California, before the observatory is eventually shipped to the launch site in French Guyana. For updates and news on JWST, please consult the NASA, STScI and CSA webpages.

Figure 1 – The fully assembled James Webb Space Telescope with its sunshield are seen partially deployed to an open configuration. (Credit: NASA/Chris Gunn)

ASTROSAT (Jean Dupuis)

ASTROSAT operations are approaching the 4-year mark, and many Canadian astronomers have benefited and produced results using this unique multi-wavelength observatory. Details about the next call for proposals are expected to be issued by ISRO soon. The NUV detector of UVIT continues to be unavailable, but the FUV and VIS channels are still performing well. Contact Joe Postma (University of Calgary) for details for UVIT data processing and analysis issues or for assistance in preparation of proposals. Canadian observers that have obtained observing time during earlier cycles have been awarded grant support from the CSA (contact person for ASTROSAT grants program at CSA is Jean Dupuis). We encourage ASTROSAT grant recipients to inform CSA of their resulting or upcoming publications, as well as any related media releases.

The CSA has provided the following grants (up to $50K max per grant) to ASTROSAT users:

2017

  • Pat Coté, U. of Victoria / NRC, “UVIT Studies of Composite Stellar Systems in Cluster Environments”
  • Luigi Gallo, St-Mary’s U., “The Connection Between the Accretion Disk and Corona in AGN with ASTROSAT”
  • Denis Leahy, U. of Calgary, “Analysis of Multi-wavelength ASTROSAT Observations of M31 and Hercules X-1”

2018

  • Carmelle Robert, U. Laval, “Young Stellar Populations in Nearby Galaxies with UVIT and SITELLE”
  • Gregory Sivakoff, U. of Alberta, “ASTROSAT Accretion Disk Observations of the 2017 Outburst of the Black Hole X-ray Binary GX-339-4”
  • Denis Leahy, U. of Calgary, “ASTROSAT Multi-Wavelength Imaging Survey Of M31, Central and Northeast Regions”

NEOSSat Guest Observer Program

NEOSSat is Canada’s own space telescope. Similar to MOST, it has a 15 cm Maksutov telescope, with a high performance baffle able to observe at low sun angles. It was launched in 2013 to discover near-Earth asteroids. The telescope is now available for new science investigations, well suited for photometry and asteroid follow ups. To that end, CSA has posted an AO for a guest observer program. The cycle 1 AO is now closed, but other cycles are to be expected soon. There is no grant funding associated with the AO and the data will be public (on CSA FTP and “Open Canada Data”). There are discussions with CADC to host the data archive in the near future.

XRISM

The JAXA X-ray telescope XRISM to be launched in 2021 is a follow up of the Hitomi mission that ended prematurely in 2016. CSA contributed to support tests of the instruments in development for XRISM. Wirth CSA grant support, Dr Luigi Gallo at St-Mary’s University and Dr Brian McNamara at University of Waterloo are members of the team. Once in operation, members of Canada’s astronomy community will be able to compete for guest observer time.

BRITE

CSA continues to support for the operations of the Canadian nanosat at the UTIAS Space Flight Laboratory.

Investing in the Future

CSA Concept and Science Studies – Enabling and Expanding on Ideas for the Future

Several original ideas and scientific analyses in space astronomy, from X-ray to CMB to exoplanets, have been the subject of CSA supported Mission Concept and Science Maturation Studies over the past year. These studies demonstrate the innovation capacity and scientific leadership in Canada.

The studies contracts are the results of a competitive RFP in 2018, that addressed the priorities set forth in the CSEW 2016 workshop and the CSA Topical Teams, detailed in the “Canadian Space Exploration – Science and Space Health priorities for Next Decade and Beyond” 2017 final report.

The space astronomy studies are listed below, all are near completion if not already done, with the science lead in brackets:

  • LiteBIRD, Mission contribution study, McGill Univ. (Matt Dobbs), completed.
    The JAXA mission LiteBIRD is to detect polarization in the CMB. The potential Canadian contribution is the read-out multiplexed electronics for the cryo-bolometers.
  • CASTOR, Science maturation study, Honeywell and NRC (Pat Coté), completed.
    A Canadian led 1-m Vis-UV space telescope for surveys. Final reports delivered comprehensive science objectives review and a mission design.
  • Photometric Observations of Extrasolar Planets, Science maturation study, Bishops’ Univ. (Jason Rowe), completed.
    A concept based on MOST micro-satellite to measure exoplanet transits at different bands to detect their atmospheres. Measurement simulations have determined a baseline mission.
  • LiteBIRD, Science maturation study, McGill (Matt Dobbs), due end of Oct.
    The JAXA mission LiteBIRD is to detect polarization in the CMB. This study supports a more detail plan for the science elements and potential contribution.
  • Colibri (High-Resolution X-ray Telescope), Concept study, UBC (Jeremy Heyl), due end of Jan.
    Concept for a high time-resolution, high energy-resolution X-ray telescope, for the study of neutron stars and accreting black holes.
  • EPPE (Extrasolar Planet Polarimetry Explorer), Concept study, Magellan and UWO (Stan Metchev), due end of Nov.
    High-precision measurements from blue through near infrared to infer attributes of exoplanetary atmospheres, using time-resolved differential polarimetry to explore nearby hot Jupiters and Earth-like planets.

(There is a similar number of planetary science studies, also aligned with the priorities described in the CSEW report.)

Co-Investigator Grants – Supporting Canadian Researchers on International Missions

CSA recognizes the expertise that exists in space science in Canada which is exemplified by members of the community being invited to join space missions of other nations. In early 2019, CSA issued an announcement of opportunity (AO) to grant support to space astronomy and planetary exploration scientists that have obtained a role in a mission’s science team or consortium. As recommended by the JCSA and PECC (space astronomy and planetary exploration consultation committees, respectively), this AO aimed to provide support to members of the community to participate on missions for which CSA is not involved otherwise. The first AO offered grants up to $100K over two years. The recipients of this competition are (with the related mission in brackets):

  • Catherine Johnson, UBC (InSight, Mars mission)
  • Will Percival, U. of Waterloo (Euclid mission)
  • Ed Cloutis, U. of Winnipeg (ExoMars)
  • JJ Kavelaars, U. of Victoria (New Horizons)
  • Douglas Scott, UBC (Euclid mission)
  • Livio Tornabene, UWO (ExoMars)
  • Jeremy Heyl, UBC (IXPE)
  • Lyle Whyte, McGill (ExoMars)

FAST Grants AO

CSA is currently advertising the Announcement of Opportunity for FAST 2019 grants. Please consult the AO webpage for details and the submission deadline.

The complete list of awards of the FAST 2017 grants are available here. The following are the awards related to space astronomy:

In the $400K category:

  • University of Toronto, “ Visible and Near-UV Wide-Field Imaging from the Stratosphere” Dr. B. Netterfield

In the $200K category:

  • McGill University, “ High-Energy Light Isotope eXperiment (HELIX)”, Dr. D. Hanna
  • University of Toronto, “Analysis of Cosmic Microwave Background Polarization Data from the Second Flight of the SPIDER Balloon-borne Telescope”, Dr. John Richard Bond
  • University of Victoria, “Windows to Worlds: Science Readiness and Requirements for Small and Large Exoplanet Characterization Missions”, Dr. C. Goldblatt

In the $100K category:

  • Western University, “ Surveying the Best Hosts for Detecting Earth-like Extrasolar Planets”, Dr. S. Metchev

Technology Development

The CSA supports the development of technologies to potential future missions in order to help industry to remain competitive and ready. Under the current Technology Development (STDP) Program CSA announced its intent to support technologies related to the ESA SPICA mission and the JAXA LiteBIRD mission. Regarding SPICA technology, a contract has been awarded to ABB (Quebec) for the cryogenic mechanism of the FTS. Regarding LiteBIRD, the RFP targeting digital read out systems for space, is still open at the time of this writing.

Consultations

LRP 2020 and a CSA Town-Hall October 31

As most readers will be aware, CASCA has initiated the Long Range Plan consultations. The CSA is pleased to support these activities and will be hosting the LRP Panel and town-hall at CSA Headquarters in St-Hubert on Oct 31. For related information, please see the LRP contribution by Pauline Barmby in this issue of Cassiopeia.

The JCSA Consultation Committee

The current membership comprises:
Jason Rowe, Bishop U. (co-Chair)
Denis Laurin, CSA (co-Chair)
Renée Hlozek, U. of Toronto
Locke Spencer, U. of Lethbridge
Chris Willott, NRC Herzberg
Daryl Haggard, McGill U.
Jeremy Heyl, UBC

The last meeting was in Montreal just prior to the CASCA AGM. The next planned meeting will be by telecom in November or December 2019.

—————
Wishing everyone a colourful autumn,
Denis Laurin

President’s Report

By / par Rob Thacker (CASCA President)
(Cassiopeia – Autumn / l’automne 2019)

Dear CASCA Members,

I sincerely hope the Fall term has begun well for you. A new academic year can often bring new and unanticipated challenges. Most of the messages I’ve sent so far have been ones of acknowledgement and/or updates. In this message I thought I’d discuss some difficult issues we face as a scientific community.

I’m reasonably sure that many of us see astronomy as something that should bring people together, be it families, communities, even nations. My grandfather “Dadger” taught me some of the constellations and was the first person to show me a lunar eclipse (my roots are from a small fishing village). But going broader, every culture has their own sky lore and stories. Sharing them is potentially a way to build bridges and a starting point for wider discussions.

Yet that is really a modern viewpoint reflecting astronomy’s wider perception in western societies of having philosophical impacts that outweigh the practical. Of course, astronomy does have practical value today, but it is not immediately self-evident to many. Indeed, I visit Ottawa regularly to make astronomy’s practical implications more widely understood. But go back 100+ years and western astronomy played a very distinct role in ensuring security through timekeeping and the associated surveying. Its practical significance overshadowed its philosophical implications, and in many ways, it can be seen as a tool that furthered colonial agendas.

Therein lies a significant difference between our internal perception of our field vs that held by many scholars outside it. Astronomy is not measured solely by its current research outputs, as spectacular and awe-inspiring as they may be. As the facilities we build get larger, the nature of our field and the perceptions of it change. The term “astronomy industry” may garner a rueful smile when we read it, knowing as we do that our “product” is largely knowledge, and yet outside the field it is a term often used. Once projects reach the billion-dollar level that kind of language is not surprising.

Much of what I’m going to discuss finds genesis in the current TMT situation, but I’d like to take a step back and consider astronomy’s impact elsewhere. Having visited South Africa in 2016, I have found discussions of astronomy’s role within the country to offer several distinct and thought-provoking perspectives. See [1] and references therein for a detailed discussion social and political developments related to the SKA and astronomy within South Africa.

After years of apartheid, the Mandela and later governments sought to establish a “less militaristic” path forward and astronomy was chosen as one of the key science areas. The enormous internal changes going on in the country were also set against an increasingly global perspective, and a desire to position South Africa as an active and deserving member of the global knowledge economy. To this end, South Africa’s 1996 White Paper on Science and Technology includes the following passage:

“scientific endeavour is not purely utilitarian in its objectives and has important associated cultural and social values. It is also important to maintain a basic competence in ‘flagship’ sciences such as physics and astronomy for cultural reasons. Not to offer them would be to take a negative view of our future – the view that we are a second class nation, chained forever to the treadmill of feeding and clothing ourselves.”

In [1] the funding that resulted for astronomy is argued as being a result of “canny marketing of astronomy as a national ‘feel-good’ story.” This is not so much a criticism of the intentions of scientists, but rather an acknowledgement of political aspirations in a global context, and the endeavours of a number of key actors within the government.

Hidden in the above, is one of the greatest challenges astronomy faces. The international “mega-project” nature of many projects positions the field at a policy/social interface where global aspirations conflict against local. For optical astronomy the concerns can be localized to the site and local light ordinances. These can be highly complex of course, potentially having both environmental and human (land) rights concerns. However, for radio astronomy the need for low backgrounds can create severe constraints on local communication infrastructure across large areas. For the often economically disadvantaged communities in the Karoo that desire modern communication infrastructure, is it reasonable to tell them that they must forfeit a cellphone?

The South African government has decreed that areas of land can be set aside for astronomy projects. The “Astronomy Advantage Areas” are regions of land controlled for the purposes of scientific progress, while several key areas were also directly purchased. These decisions might seem a reasonable step to us as international collaborators, and indeed were done in consultation with the San Council and other groups representing interests in the Karoo. Numerous public consultations were held by the SKA. Yet we are very distant from the local concerns and aspirations of the Karoo communities who feel their voices were not heard.

Astronomy is firmly in an era where the “costs” involved go beyond just monetary, into the social, political and legal (human rights). Of course, there remain some places without human habitation, but for most of the remote places astronomy seeks to build infrastructure, there are indigenous peoples or local residents and questions we must face. While issues surrounding a given project/region are always distinct, they can span the spectrum of development concerns from too little to too much.

For all the challenges outlined here, I remain resolutely behind the scientific goals and the value of the knowledge being sought. I have conducted hundreds of interviews in support of the amazing research we do. But the routes to gaining this knowledge are becoming ever more layered and can have impacts that we may not anticipate. Precisely how the global to local interface is approached may become the defining factor in the future success of our field.

Ultimately, it is astronomy’s very nature to seek pristine and frequently remote lands for facilities. That means the issues we see being raised in Hawai’i, South Africa and other places are likely to become bigger concerns in the future. While we might look to political routes to solve these problems for us, the harsh reality is we are the individuals that develop and propose facility concepts. Engineers take ethics courses, have ethics committees review projects and undergo community consultations, but this is not a route to avoiding conflict or demonstrations. Just consider the many hydroelectric dam projects or oil pipelines that are contested. And to make matters even more complex, no society whether western or indigenous, is always uniform in its viewpoints. That said, I appreciate the issue of differences of viewpoints can be highly nuanced for indigenous peoples and profoundly influenced by colonial legacies.

Awareness and respect of local/cultural issues combined with truly active engagement and learning is something that we must continue to build. It’s one thing to say that knowledge from astronomy benefits everyone, but there’s a growing onus on astronomers to make connections that fulfil that promise.

[1] Cherryl Walker, Davide Chinigò & Saul Dubow (2019) Karoo Futures: Astronomy in Place and Space – Introduction, Journal of Southern African Studies, 45:4, 627-639

BRITE-Constellation Mission Update

By / par Gregg Wade (Canadian PI for BRITE)
(Cassiopeia – Autumn / l’automne 2019)

BRITEpatch

BRITE-Constellation is an international space astronomy mission consisting of a fleet of 20x20x20 cm nanosatellites dedicated to precision optical photometry of bright stars in two photometric colours. The mission continues in full science operations, with 38 data releases to BRITE target PIs having already taken place, and many datasets available in the public domain from the BRITE public archive.

The BRITE mission is a collaboration between Canadian, Austrian and Polish astronomers and space scientists. The Canadian partners represent University of Toronto, Université de Montréal, Bishop’s University, and Royal Military College of Canada. The mission was built, and the Canadian satellites operated, by the University of Toronto Institute for Aerospace Studies Space Flight Lab (UTIAS-SFL). The Canadian Space Agency funded the construction of the Canadian satellites, and continues to support their day-to-day operations.

Operations

There are five operating BRITE satellites in the Constellation, collecting data on various sky fields in a coordinated programme to obtain well-sampled, longterm continuous (~6 months) light curves in both red and blue bandpasses.

As this issue of Cassiopeia went to press, here was the status of the sky assignments for the BRITE nanosats:

  • BRITE Toronto (Canada): Toronto observes with a red filter. It is currently observing the Cyg/Lyr II field. As implied by the numeral ‘II’, the current campaign on this field represents a revisit of a previously-observed field.
  • BRITE Lem (Poland): Lem observes with a blue filter. It is also observing the Cyg/Lyr II field after successfully completing a campaign on the Sco II field.
  • BRITE Heweliusz (Poland): Heweliusz observes with a red filter. This satellite was observing the Sco II field, but those observations were recently interrupted in order to observe a Target of Opportunity.
  • BRITE Austria (Austria): BRITE Austria observes with a blue filter. It is observing the Sag V field.
  • UniBRITE (Austria): UniBRITE observes with a red filter. This satellite is currently idle due to unresolved ACS stability issues.

The BRITE Constellation observing programme complete to mid-2020 has been planned by the BRITE Executive Science Team (BEST), and details are available on the BRITE photometry Wiki page.

Recent Science Results

Figure 1 – The left column illustrates the heartbeat model fit to BRITE photometry obtained by 3 different satellites. The right column illustrates the fit to the various epochs of radial velocity measurements. From Pablo et al. (2019).


« Epsilon Lupi: measuring the heartbeat of a doubly magnetic massive binary with BRITE Constellation » (Pablo et al. 2019, MNRAS 488, 64)
. Epsilon Lupi A is a binary system consisting of two main-sequence early B-type stars Aa and Ab in a short period, moderately eccentric orbit. The close binary pair is the only doubly magnetic massive binary currently known. Using photometric data from the BRITE Constellation we identify a modest heartbeat variation. Combining the photometry with radial velocities of both components we determine a full orbital solution including empirical masses and radii. These results are compared with stellar evolution models as well as interferometry and the differences discussed. We also find additional photometric variability at several frequencies, finding it unlikely these frequencies can be caused by tidally excited oscillations. We do, however, determine that these signals are consistent with gravity mode pulsations typical for slowly pulsating B stars. Finally we discuss how the evolution of this system will be affected by magnetism, determining that tidal interactions will still be dominant.

Conferences, Resources and Social Media

Conferences

Figure 2 – Conference photo from “Stars and their Variability, Observed from Space”.

The BRITE team recently organized an highly successful conference entitled “Stars and their Variability, Observed from Space”, to celebrate the anniversary of BRITE-Constellation in Vienna, Austria from August 19 – 23, 2019. Over 250 participants from 47 countries attended.

Resources

The BRITE Public Data Archive, based in Warsaw, Poland, at the Nikolaus Copernicus Astronomical Centre, can be accessed at brite.camk.edu.pl/pub/index.html.

The mission Wiki (including information on past, current and future fields) can be accessed at brite.craq-astro.ca/.

BRITE Constellation is on Facebook, at @briteconstellation.

The BRITE International Advisory Science Team

The BRITE International Advisory Science Team (BIAST), which consists of BRITE scientific PIs, technical authorities, amateur astronomers, and mission fans, advises the mission executive on scientific and outreach aspects of the mission. If you’re interested to join BIAST, contact Canadian BRITE PI Gregg Wade: wade-g@rmc.ca.

CATAC Update on the Thirty Meter Telescope

By / par Michael Balogh (CATAC Chair)
(Cassiopeia – Autumn / l’automne 2019)

There has been no TMT construction activity since protestors blocked the access road on July 17. The situation remains peaceful, as described in our recent CASCA circular. We continue to welcome your feedback and questions. A good place for factual information about the work TMT has done to engage the Hawaiian community and more is the website www.maunakeaandtmt.org.

CATAC remains strongly supportive of the TMT, and of the activities the Project has undertaken over the past decade to consult with and engage the Hawaiian community. It has become increasingly clear in recent weeks that the most prominent voices heard during the first days following the anticipated restart of construction are not representative of most Hawaiians, including the Native population. There is significant support for TMT on the Big Island of Hawaii, and more and more people are coming forward to say so. Furthermore, many of the concerns expressed by the protestors have little to do with TMT itself, leaving hope that there is a way to address those concerns and build TMT at the same time.

As CATAC reported previously, the alternative site, in the Canary Islands, would allow TMT to realize most of its exciting potential. In particular, the site characteristics for adaptive optics in the near infrared are very competitive with those of Maunakea. However, the lower altitude and higher humidity of the ORM site severely compromise observations in the ultraviolet and mid-infrared. These wavelength regimes enable some compelling science cases, including the search for biosignatures on exoplanets. There is no doubt that Maunakea is superior to ORM for science observations, and for this reason we hope that, following some further work and negotiation, it will be possible to undertake TMT construction with broad Hawaiian support.

As we wait for these events to unfold, we are conscious of the potential additional delay to a project that is already five years behind schedule. The consequences of this should be considered deeply as we move into the process for LRP2020. TMT will hopefully have a long and productive lifetime – 40 years or more – and will shape many future generations of Canadian astronomers. It is CATAC’s opinion that the impact of this delay must be considered within this broader context: we must not risk or sacrifice the long-term benefits of having access to the best possible observatory for future Canadians.

It is important also to not lose focus on the long term development of this project, and with that in mind we remind you that the next TMT Science Forum will be November 4—6 2019, in Xiamen, China. This forum is a great opportunity to participate in, and influence, teams developing the future instrumentation suite for TMT. ACURA will again be providing some travel support for University-based researchers to attend this meeting. Requests can be directed to mbalogh@uwaterloo.ca.

We have proposed that the next Science Forum, sometime in 2020, be held in Canada, and this proposal has been welcomed by the Science Advisory Committee. Stay tuned for details.

CATAC membership:
Michael Balogh (University of Waterloo), Chair, mbalogh@uwaterloo.ca
Bob Abraham (University of Toronto; TIO SAC)
Stefi Baum (University of Manitoba)
Laura Ferrarese (NRC)
David Lafrenière (Université de Montréal)
Harvey Richer (UBC)
Kristine Spekkens (Royal Military College of Canada)
Luc Simard (Director General of NRC-HAA, non-voting, ex-officio)
Don Brooks (Executive Director of ACURA, non-voting, ex-officio)
Rob Thacker (CASCA President, non-voting, ex-officio)
Kim Venn (Science Governor for Canada on TIO Governing Board, non-voting, ex-officio)
Stan Metchev (TIO SAC, non-voting, ex-officio)
Tim Davidge (TIO SAC Canadian co-chair; NRC, observer)
Greg Fahlman (NRC, observer)

Long Range Plan 2020 / Plan à long terme 2020

From / de Pauline Barmby, Bryan Gaensler (LRP2020 co-chairs / co-présidents PLT2020)
(Cassiopeia – Autumn / l’automne 2019)

La version française suit

Canadian astronomers are hard at work on their white papers for LRP 2020. The due date of Sept 30, 2019 means that it’s not too late to get involved; contact the lead authors and find out how you can contribute!

The next stage of LRP2020 will be a series of town halls, in Montréal (CSA Oct 31, downtown Nov 1), Toronto (Nov 12), Victoria (Nov 26), Vancouver (Nov 27), and Edmonton (Nov 29). The goal of the town halls is to inform the community about the breadth of our collective vision for the future as demonstrated in the white paper submissions, and to facilitate consideration of our priorities. Each town hall will have a science theme and a facilities theme as well as time for open discussion. Remote participation by videoconference will be enabled. Town hall agendas will be available by mid-October.

As always, the latest news on LRP2020 is available from the webpage, the Slack workspace and our Twitter handle @LRP2020. The panel can be contacted at panel@lrp2020.groups.io and the co-chairs at chairs@lrp2020.groups.io.



Les astronomes canadiens travaillent d’arrache-pied sur leurs livres blancs pour le PLT2020. L’échéance du 30 septembre 2019 signifie qu’il n’est pas trop tard pour vous impliquer; contactez les auteurs principaux et découvrez comment vous pouvez contribuer!

La prochaine étape de PLT2020 sera une série d’assemblées publiques, à Montréal (ASC le 31 octobre, centre-ville le 1er novembre), à Toronto (le 12 novembre), à Victoria (le 26 novembre), à Vancouver (le 27 novembre) et à Edmonton (le 29 novembre). L’objectif des assemblées publiques est d’informer la communauté sur l’ampleur de notre vision collective de l’avenir, telle que présentée dans les livres blancs soumis, et de faciliter l’examen de nos priorités. Chaque assemblée aura un thème scientifique et un thème d’installations ainsi que du temps pour une discussion ouverte. La participation à distance par vidéoconférence sera activée. Les ordres du jour des assemblées publiques seront disponibles à la mi-octobre.

Comme toujours, les nouvelles sur le PLT2020 peuvent être trouvées sur la page Web, à Slack, et sur Twitter @LRP2020. Le panel peut être contacté à panel@lrp2020.groups.io et les co-présidents à chairs@lrp2020.groups.io.

BRITE-Constellation Mission Update

By / par Gregg Wade (Canadian PI for BRITE)
(Cassiopeia – Summer / été 2019)

BRITEpatch

BRITE-Constellation is an international space astronomy mission consisting of a fleet of 20x20x20 cm nanosatellites dedicated to precision optical photometry of bright stars in two photometric colours. The mission continues in full science operations, with 25 data releases to BRITE target PIs having already taken place, and many datasets available in the public domain from the BRITE public archive.

The BRITE mission is a collaboration between Canadian, Austrian and Polish astronomers and space scientists. The Canadian partners represent University of Toronto, Université de Montréal, Bishop’s University, and Royal Military College of Canada. The mission was built, and the Canadian satellites operated by, the University of Toronto Institute for Aerospace Studies Space Flight Lab (UTIAS-SFL). The Canadian Space Agency funded the construction of the Canadian satellites, and continues to support their day-to-day operations.

Operations

There are five operating BRITE satellites in the Constellation, collecting data on various sky fields in a coordinated programme to obtain well-sampled, longterm continuous (~6 months) light curves in both red and blue bandpasses.

As this issue of Cassiopeia went to press, here was the status of the sky assignments for the BRITE nanosats:

  • BRITE Toronto (Canada): Toronto observes with a red filter. It is currently observing the Car III field. As implied by the numeral ‘III’, the current campaign on this field represents a revisit of a previously-observed field. Attempts have also been initiated to begin observing the CygLyr III field as a switch field.
  • BRITE Lem (Poland): Lem observes with a blue filter. It is observing the Sco II field.
  • BRITE Heweliusz (Poland): Heweliusz observes with a red filter. This satellite is also observing the Sco II field.
  • BRITE Austria (Austria): BRITE Austria observes with a blue filter. It is observing the Sag V field after having recently completed the Vel/Pup V field.
  • UniBRITE (Austria): UniBRITE observes with a red filter. This satellite is also observing the Sag V field after having recently completed the Vel/Pup V field.

The BRITE Constellation observing programme complete to mid-2020 has been planned by the BRITE Executive Science Team (BEST), and details are available on the BRITE photometry Wiki page.

Recent Science Results

« Revisiting the pulsational characteristics of the exoplanet host star beta Pictoris », by K. Zwintz et al. (A&A, in press). Zwintz et al. revisit the pulsational properties of beta Pic – host to a gas giant planet – and identify its pulsation modes from normalised amplitudes in five different passbands. They conducted a frequency analysis using three seasons of BRITE-Constellation observations in the BRITE blue and red filters, in addition to a long bRing light curve and nearly 8 years of photometric measurements from the SMEI mission. Using 2D rotating models, they fit the normalised amplitudes and frequencies through Monte Carlo Markov Chains, identifying 15 pulsation frequencies in the range from 34 to 55c/d, where two display clear amplitude variability. Using the normalised amplitudes in up to five passbands, they identify the associated modes as three l = 1, six l = 2 and six l = 3 modes. Multiple fits to the frequencies and normalised amplitudes are obtained including one with a near equator-on inclination for beta Pic, which corresponds to expectations based on the orbital inclination of beta Pic b and the orientation of the circumstellar disk. This solution leads to a rotation rate of 27% of the Keplerian break-up velocity, a radius of 1.497+-0.025 RSun, and a mass of 1.797+-0.035 MSun. The ~2% errors in radius and mass do not account for uncertainties in the models and a potentially erroneous mode-identification.


Figure 1 – Frequency analysis of the BRITE 2016/17 data in the red filter (left) and the blue filter (right): spectral window (panels a and e), original amplitude spectrum from 0 to 100 d−1 (panels b and f), zoom into the original amplitude spectrum (panels c and g) and residual amplitude spectrum after prewhitening the corresponding pulsation frequencies (panels d and h) with the residual noise level marked as horizontal dashed lines. The identified pulsation frequencies (as listed in Table 2) are marked in panels b and c as red (for the BRITE red filter) and in panels f and g as blue (for the BRITE blue filter) lines. The triangles mark the frequencies found in the ASTEP data by Mékarnia et al. (2017). Vertical dashed lines mark the positions of the respective satellite’s orbital frequency (i.e., BTr on the left and BLb on the right) and its multiples. From Zwintz et al. (in press).

Conferences, Resources and Social Media

Conferences

The BRITE team is spearheading the organization of a conference entitled “Stars and their Variability, Observed from Space”, to occur in Vienna, Austria from August 19 – 23, 2019. Preregistration is available on the conference website.

Resources

The BRITE Public Data Archive, based in Warsaw, Poland, at the Nikolaus Copernicus Astronomical Centre, can be accessed at brite.camk.edu.pl/pub/index.html.

The mission Wiki (including information on past, current and future fields) can be accessed at brite.craq-astro.ca/.

BRITE Constellation is on Facebook, at @briteconstellation.

The BRITE International Advisory Science Team

The BRITE International Advisory Science Team (BIAST), which consists of BRITE scientific PIs, technical authorities, amateur astronomers, and mission fans, advises the mission executive on scientific and outreach aspects of the mission. If you’re interested to join BIAST, contact Canadian BRITE PI Gregg Wade: wade-g@rmc.ca.

President’s Report

By / par Rob Thacker (CASCA President)
(Cassiopeia – Summer / été 2019)

Dear CASCA Members,

Summer is upon us and by the time you read this the Annual General Meeting in Montreal will be over. So I think it fitting to begin this President’s Message with a huge thank you to the McGill organizers, beginning with the Co-Chairs Nicolas Cowan and Daryl Haggard, as well as the local organizing committee members, Carolina Cruz-Vinaccia, Emmanuel Fonseca, Louise Decelles, Émilie Parent, Taylor Bell, and the scientific organizing committee members, Vicky Kaspi, Andrew Cumming, Tracy Webb, Jonathan Sievers and Kelly Lepo. And I have to put in a thanks to CASCA Vice-President Sara Ellison for acting as the Board contact. The conference program is chock full of some great science and the theme of “Emerging fields in Astrophysics” is particularly apropos as LRP2020 moves ahead.

LRP2020

The LRP process is in full swing, and I will pass on thanks to the Co-Chairs Pauline Barmby and Bryan Gaensler, as well as the panelists Matt Dobbs, Jeremy Heyl, Natasha Ivanova, David Lafrenière, Brenda Matthews, and Alice Shapley, for taking on this immense effort. By the time you read this we will have had the initial discussion sessions at CASCA, and I can’t wait to see what kind of input we’ll get. While I can’t say there is ever a good time to write a Long Range Plan, as research is always in flux, it feels like there are an enormous number of projects looking to get started at the moment. As part of LRP2010 we reviewed over 50 different possible experiments/facilities/projects but it is clear that LRP2020 is going to eclipse that!

The response to the expression of interest for white papers was truly exceptional. With over 80 titles, and growing by the minute, the Panel is going to have its work cut out reviewing everything. I’d also like to encourage the whole community to work together as much as possible. We’re not particularly large and there is much to gain by working together on things as opposed to replicating effort.

Coalition Activities

Some of you may recall that following the Coalition visit in February we were approached by MP Hélène Laverdière about holding a reception for Canadian astronomy on ‘the Hill.’ Big thanks go to Nathalie Ouellette and René Doyon for stepping-up to interface with Madame Laverdière’s office, as well as Kristina Proulx and Duncan Rayner at Temple Scott and Associates who also helped arrange the reception. Events like this are primarily about awareness, it’s important to remember that there are many different interest groups lobbying the government, so we need to get out there and make some noise!

The reception was held on May 27th and we had representation of several LRP projects at the event, including some virtual reality demos which were a big hit! Big thanks go out to Stéphane Courteau, Matt Dobbs, Maria Drout, Kristine Spekkens and Maclean Rouble for contributing their time and talents! I had some time to give a short speech emphasizing how many world firsts Canadian astronomy has achieved, and importantly for government, the deep innovation that we contribute through our collaborations with industry. At one point we had over 40 people in the reception, and as a measure of its effectiveness we got to talk with more MPs at the event that we normally do in a couple of days of meetings.

In addition to the reception, Nathalie, Rene and I also made some of the more regular visits to MPs offices. We are continuing in the vein of ensuring our message is heard in as many different places and in as many different contexts as possible. We made a special effort to be clear on the fact that while recent investments in the CSA were most welcome, we still need a space strategy that provides clear funding avenues and opportunities for Canadian space astronomy.

With the federal election looming on October 21 we have an interesting time for lobbying ahead. In some ways it is good, those looking to get elected have reasons to listen, but in other ways bad as the focus is on electoral votes and not strategies. However, the Coalition is toying with a couple of potential awareness campaigns that might use this to our advantage. Stay tuned!

Society and Board

The Board is just about to undergo a significant change in its composition. Firstly, I have to pass on huge and heartfelt thanks, I’m sure on behalf of everyone in the society, to James Di Francesco (Secretary), Nicole St-Louis (Treasurer) for their work in these positions over six years! CASCA continues to grow as an organization and both James and Nicole have undertaken exceptionally important roles in that change. The more committees we create and the more awards we have, the more challenging these two roles have become.

In addition to James and Nicole departing, so will Erik Rosolowsky, Samar Safi-Harb and Kristine Spekkens. Great thanks to each of you for all your efforts on behalf of the society and moving forward a number of key portfolios.

At the same time, I have to acknowledge all the tremendous work being done by the various CASCA committees. Your reports and advice are central to our moving our society’s mandate forward, and I know you’re all working harder than ever as the number of pages in committee reports has risen from 34 in 2015 to 92 for the ones submitted this year! The Board has a lot of material to review in our next meeting.

I’ll end with a final thank you to all of the other members who volunteer their time to the operation of CASCA and the success of Canadian astronomy, plus our society Administrator Susan Di Francesco, our IT consultant Jennifer West. We simply can’t function without you.

Happy Summer Solstice!

Rob

Canadian Gemini Office News / Nouvelles de l’Office Gemini Canadien

By / par Stéphanie Côté (CGO, NRC Herzberg / OGC, CNRC Herzberg)
(Cassiopeia – Summer / été 2019)

La version française suit

A GHOST at HAA

A GHOST has appeared at HAA. The Gemini High-resolution Optical SpecTrograph is the next Gemini facility instrument, and is being built by a team lead by the Australian Astronomical Observatory and including the NRC HAA for the construction of the spectrograph, and the Australian National University (ANU) for instrument control system and data reduction software. The build phase has just been successfully completed in Victoria and the full integration work is starting. The commissioning is scheduled for February 2020.

GHOST will be a workhorse instrument that will provide a wide simultaneous wavelength coverage at high observational efficiency, enabling astronomers to investigate a broad range of science from the composition of the first stars to the characterization of exoplanetary systems to abundance studies of extra-galactic globular clusters. A data reduction pipeline will be delivered with the instrument. GHOST will provide simultaneous wavelength coverage from 363 nm to 950 nm, with two selectable spectral resolution modes: standard-resolution mode with R>50,000 and high-resolution mode with R>75,000. GHOST will spatially sample each target object over a field size of 1.2 arcsec. In standard-resolution mode, GHOST will be able to observe 2 targets simultaneously over a 7.5 arcmin diameter field of view with a radial velocity precision of 600 m/s over the full wavelength. In the high-resolution mode it will provide a radial velocity precision of 10 m/s over the wavelength range from 430 nm to 750 nm.

GHOST consists of three primary components: the Cassegrain unit mounted on the telescope, the spectrograph bench located in the pier lab, and a fiber cable connecting the two. The Cassegrain unit contains the positioning arm system, the object and sky fiber IFUs, and mini-ADCs. The bench spectrograph will be isolated in the Gemini-South telescope pier lab for image and wavelength stability.

Figure 1 – The HAA optical team in front of the GHOST spectrograph bench.

Figure 2 – A view of one of the two Volume-Phase-Holographic grisms for cross-dispersion.

Even Easier than Before to Complete your Gemini Proposal

Please note that the PIT (Phase 1 Tool) will automatically calculate the required time for baseline calibrations and add it to the time request. Just enter for each target the on-source exposure time needed with overheads (acquisition time, readout time, etc.) and PIT will calculate the total time needed for the target. Note that the ITC (Integration Time Calculator) output now gives these overhead estimates. It will list them all with a breakdown of the time needed for each and give a total overhead time. In summary, calculate the required integration time, add the supplements listed by the ITC, put this total in PIT, and PIT will give a grand total time by also adding the baseline calibrations time. For Visitor instruments though, all this will not be automatic and Alopeke and Zorro PIs should include in PIT the program time for PSF standards if they need them, and TEXES PIs must include time for telluric standards in their proposals.

Relax Please!

About 25% of the Gemini queue time that is allocated to the Canadian programs is to fill the Band 3 time. This Band 3 is overfilling the queue with programs that can be observed in more relaxed observing conditions, when there are no suitable band 1 or 2 programs that could use them. Typically we do not receive many proposals requesting these relaxed conditions (such as IQ85% or IQ=Any or Cloud Cover worse than 70%.). Yet many programs just need to achieve a certain signal-to-noise to be successful without the necessity for good seeing, and can thus be completed with these relaxed conditions by integrating longer. The Gemini Integration Time Calculators (ITCs) will help you figure out how much more time you will need to achieve your same goals. Please consider submitting proposals with these relaxed conditions. The Phase1 Tool (PIT) allows you to ask for a time for Band 1/2 conditions and a different time if in Band 3 with Band 3 conditions. Please submit more proposals of all sorts actually! This semester for 2019B we received only 23 Canadian proposals all in all which is the lowest number received in at least the last 15 years. The chance of success at CanTAC is thus quite favorable for your project, and it is therefore a good opportunity to get lots of time for students close to finishing their theses who‘d like to expand into some new projects or more seasoned astronomers willing to try some more risky projects.

Recent Canadian Gemini Press Releases

On June 11 the GPI Exoplanet Survey (GPIES) team announced the results of their analysis of the first 300 young nearby stars observed in the survey. The team, led by Eric Nielsen of Standford, includes many Canadians: Rene Doyon, Julien Rameau (U de Montreal), Christian Marois, Celia Blain, Benjamin Gerard (HAA), Stanimir Metchev (UWO). From the first 300 stars, GPIES has detected six giant planets and three brown dwarfs, which represents the largest, most sensitive direct imaging survey for giant planets published to date. The analysis suggests that brown dwarfs may have formed differently than wide-separation giant planets. It has been a longstanding question as to whether brown dwarfs (objects with masses between that of a small star and a super-planet, but lacking the nuclear fusion in their cores to burn as a star) are born more like stars or planets. Stars form from the top down by the gravitational collapse of large primordial clouds of gas and dust, while planets are thought to form from the bottom up by the assembly of small rocky bodies that then grow into larger ones (core/pebble accretion).

This study finds that whereas more massive brown dwarfs outnumber less massive brown dwarfs, for giant planets the trend is reversed: less massive planets outnumber more massive ones. Moreover, brown dwarfs tend to be found far from their host stars, while giant planets concentrate closer in. These opposing trends point to brown dwarfs forming top-down by gravitational instability (like stars), and giant planets forming bottom-up (core accretion). The press release can be found here.

Join the thousands and thousands of Gemini Observatory followers on Facebook: @GeminiObservatory and Twitter: @GeminiObs



Le GHOST de HAA

Un GHOST est apparu à HAA. Le Gemini High-resolution Optical SpecTrograph est le nouvel instrument Gemini à voir le jour, il a été construit par une équipe mené par l`Australian Astronomical Observatory et incluant le NRC HAA pour la construction du spectrographe, et l`Australian National University (ANU) pour le système de contrôle de l`instrument et le logiciel de réductions de données. La phase de construction vient tout-juste de se terminer à Victoria et le travail d`intégration débute. La mise-en-service est prévue pour février 2020.

GHOST sera un instrument majeur qui permettra de couvrir simultanément une large plage de longueurs d`ondes avec beaucoup d`efficacité, permettant aux astronomes d`étudier une vaste gamme de sujets tels que la composition des premières étoiles, la caractérisation des systèmes exoplanétaires, ou les études d`abondances d`amas globulaires extragalactiques. Un logiciel de réduction de données sera livré avec l`instrument. GHOST permettra de couvrir simultanément de 363nm à 950nm, avec un choix de deux modes de résolution spectrale : le mode de résolution standard avec R>50,000; et le mode haute résolution avec R>75,000. GHOST pourra échantilloner chaque cible sur un champ de 1.2 secondes d`arc. Dans le mode de résolution standard, GHOST pourra observer simultanément 2 cibles sur un champ de 7.5 minutes d`arc de diamètre et avec une précision de vitesse radiale de 600 m/s sur toute la plage de longueurs d`onde. Dans le mode de haute résolution GHOST pourra atteindre une précision de vitesse radiale de 10 m/s sur une étendue de 430nm à 750nm.

GHOST est consistué de 3 composantes primaires: l`unité Cassegrain montée au télescope, le spectrographe sur banc dans le labo dans le pilier du télescope, et un cable de fibres connectant les deux. L`unité Cassegrain comprend le système de bras de positionnement, les IFUs pour la cible et le ciel, et des mini-ADCs. Le spectrographe sur banc sera isolé dans le labo dans le pilier du télescope Gemini-Sud pour une plus grande stabilité spatiale et spectrale.

Figure 1 – L`équipe optique de HAA devant le spectrographe GHOST.

Figure 2 – Vue d`un des deux grismes VPH pour la dispersion croisée.

Encore plus facile qu`avant de compléter votre demande de temps Gemini

Veuillez noter que PIT (Phase 1 Tool) dorénavant calcule automatiquement le temps requis pour les calibrations de base et ajoute ce temps au temps demandé tel qu`affiché dans la demande. Il vous suffit d`enter pour chaque cible le temps d`intégration requis incluant les suppléments de temps (`overheads` tels que les temps d`acquisition, temps de lecture, etc) et PIT calculera le temps total requis pour chaque cible. Notez que les ITCs (Integration Time Calculators) donnent maintenant des estimées de ces suppléments de temps. Ils seront listés un à un avec le temps estimé pour chacun et la somme du temps total requis en supplément. En résumé, calculez le temps d`intégration requis, ajoutez les suppléments listés par le ITC, mettez ce total dans PIT et PIT donnera un grad total en ajoutant aussi les calibrations de base. Pour les instruments Visiteurs par contre cela n`est pas automatique et les PIs de demandes Alopeke and Zorro devront inclure dans PIT le temps nécessaire pour les étoiles standardes PSFs si nécessaires, et pour TEXES le temps pour les standards telluriques.

Relaxez SVP!

Environ 25% de tout le temps Gemini en queue qui soit alloué au Canada est pour remplir la Bande 3 de la queue.Cette Bande 3 sur-remplit la queue avec des programmes qui peuvent être observés dans des conditions météoroloqiues moins demandantes, lorsqu`il n`y a plus de programmes de Bande 1 ou 2 qui puissent les utiliser. Bien souvent nous ne recevons pas beaucoup de demandes de temps demandant ces conditions plus relaxes (telles IQ85% ou IQ=Any ou Cloud Cover plus que 70%.). Pourtant plusieurs programmes ont simplement besoin d`atteindre un certain signal-sur-bruit pour réussir sans aucune nécessité pour un bon seeing, et ainsi peuvent être completer adéquatement sous des conditions plus relaxes en integrant plus longtemps. Les Calculateurs de Temps d`Intégration de Gemini (ITCs) vous aideront à trouver combine de temps supplémentaire sera nécessaire pour atteindre vos objectifs. SVP pensez à soumettre des demandes avec ces conditions plus relaxes. Le Phase 1 Tool (PIT) vous permet de demander un temps pour des conditions de Bandes 1-2 et un temps différent pour la Bande 3 avec des conditions de Bande 3. En fait SVP soumettez plus de demandes de toutes sortes! Ce semestre 2019B nous n`avons reçu que 23 demandes Canadiennes en tout, ce qui est notre total le plus bas depuis au moins 15 ans. Vos projets ont donc de très bonnes chances de succès au CanTAC, et ceci est donc une bonne opportunité d`obtenir beaucoup de temps pour des étudiant(e)s près de terminer leur thèse et qui souhaitent étendre leurs intérêts vers de nouveaux projets ou pour les astronomes plus chevronné(e)s qui aimeraient tenter des projets plus risqués.

Communiqués de presse canadiens récents

Le 11 juin dernier l`équipe du GPI Exoplanet Survey (GPIES) a annoncé les résultats de leur analyse des premières 300 étoiles jeunes proches observées dans ce sondage. L`équipe, dirigée par Eric Nielsen de Standford, inclut plusieurs Canadien(nes): Rene Doyon, Julien Rameau (UdeMontreal), Christian Marois, Celia Blain, Benjamin Gerard (HAA), Stanimir Metchev (UWO). Sur les 300 premières étoiles, GPIES a détecté six planètes géantes et trois naines brunes, ce qui représente le sondage par imagerie directe le plus important et le plus sensible réalisé à ce jour pour les planètes géantes. L’analyse suggère que les naines brunes pourraient s’être formées différemment des planètes géantes à séparation large. La question se pose depuis longtemps de savoir si les naines brunes (objets dont les masses se situent entre celles d’une petite étoile et d’une super-planète, mais dépourvues de la fusion nucléaire dans leur centre pour brûler comme une étoile) se forment plutôt comme des étoiles ou des planètes. Les étoiles se forment de haut en bas par l’effondrement gravitationnel de grands nuages primordiaux de gaz et de poussière, alors que les planètes sont supposées se former de bas en haut par l’assemblage de petits corps rocheux et poussières qui s`assemblent ensuite pour devenir plus grands (accrétion de noyaux/galets).

Selon cette étude, alors que les naines brunes plus massives sont plus nombreuses que les naines brunes moins massives, la tendance est inversée pour les planètes géantes: les planètes plus massives sont moins nombreuses que les moins massives. De plus, les naines brunes ont tendance à se trouver loin de leurs étoiles hôtes, tandis que les planètes géantes se concentrent plus près. Ces tendances opposées indiquent que les naines brunes se forment par instabilité gravitationnelle (comme les étoiles) alors que les planètes géantes se forment de bas en haut (accrétion de galets). Vous pouvez lire le communiqué de presse ici.

Rejoignez les milliers et milliers de suiveurs de l’Observatoire Gemini sur Facebook: @GeminiObservatory et Twitter: @GeminiObs.

Maunakea Spectroscopic Explorer (MSE) Update

By / par Patrick Hall (MSE Management Group Member)
(Cassiopeia – Summer / été 2019)

Updated Detailed Science Case

The Detailed Science Case for the Maunakea Spectroscopic Explorer: 2019 Edition is now available as arXiv:1904.04907 or from the redesigned MSE website. This document relied on input from the MSE Science Team (380 members worldwide and counting – join today!), particularly the leads of the eight science working groups.

Major pillars in the science program for MSE include (i) the ultimate Gaia follow-up facility for understanding the chemistry and dynamics of the distant Milky Way, including the outer disk and faint stellar halo at high spectral resolution (ii) galaxy formation and evolution at cosmic noon, via the type of revolutionary surveys that have occurred in the nearby Universe, but now conducted at the peak of the star formation history of the Universe (iii) derivation of the mass of the neutrino and insights into inflationary physics through a cosmological redshift survey that probes a large volume of the Universe with a high galaxy density.

The Science Team has also responded to a survey about the balance between science requirements and instrument capabilities as described in the MSE Conceptual Design, in particular as relates to the HR resolution and the LMR H-band capabilities. Later this year, the Science Team will begin work on a Design Reference Survey to demonstrate quantitatively the science and survey capabilities of MSE during the first two years of science operations.

MSE Development in Canada: SoU, ACURA, and CFI proposal

MSE has completed its Conceptual Design Phase, and a Statement of Understanding (SoU) governing the Preliminary Design Phase is ready for signature by the MSE participants. The ACURA Institutional Council will vote on becoming the Canadian signatory on this SoU at its meeting after CASCA this June. Signatories to the SoU are under no financial obligation to MSE; the SoU merely specifies how any contributions that are made from signatories will be valued by the MSE project.

To secure a substantial Canadian share in MSE, funding will have to be secured from peer-reviewed grants such as CFI. To that end, work led by U. Victoria Prof. Colin Bradley continues on a substantial (~$20M) CFI request for University and industry partners to complete design work on numerous MSE subsystems. To date, MSE internal proposals have been approved at Victoria, UBC, Waterloo, and St. Mary’s, with proposals still under review at York, McGill, Western, Manitoba, and Toronto.

Partnership Plan, Budget, Timeline, and Long-Term Planning Submissions

The MSE Management Group will soon circulate a draft partnership plan for MSE during construction and operations phases. MSE has elements of both a facility and a survey (e.g., SDSS). 80% of the observing time will be used for legacy-style surveys (durations of several years), solicited from and developed by the partner community via regular calls. 20% of the time (over 10 million fiber-hours in the first 5 years) will be used for smaller strategic programs. In the draft partnership plan, partners will be able to participate in all legacy surveys and will have access to all legacy survey data, and partners will have access to a share of the strategic survey time proportional to their contributions to the overall MSE budget. (If you have an interest in weighing in on the draft MSE partnership plan, contact either of your MSE MG reps.)

The cost of MSE based on the Conceptual Design is US$328M base cost + $86M risk cost, with the telescope and spectrographs being the largest contributors to that budget. A technically paced schedule with CFHT decommissioning in mid-2024 yields MSE science commissioning beginning in 2029. Preliminary design phase technical and partnership work will refine those numbers, but it remains the case that MSE is the only 8-meter class wide-field optical/near-infrared spectroscopic facility (as opposed to instrument) in the design stages.

To that end, MSE-related white papers and white paper notices of intent have been submitted to the LRP and the Astro2020 long-term planning exercises by the Project Office and by scientists interested in MSE. These submissions review specific science goals achievable with MSE and the design and planning work underway for it.

Speaking of which, the MSE Project Office is hiring a Systems Engineer – see the job ad here.

Meetings

MSE presentations formed part of the triennial CFHT User’s Meeting held in Montreal from May 20-22. Presentations by Doug Simons (CFHT and MSE), Alan McConnachie (MSE Overview), Daniel Huber (Stellar Astrophysics and Exoplanets), Daryl Haggard (Time Domain Science), Michael Balogh (Galaxy Formation and Evolution), and Will Percival (Cosmology) can be found here.

MSE will also have a presence at the CASCA meeting in Montreal; more about that meeting in the next Cassiopeia.

For Further Information

For any questions about MSE, contact your MSE Management Group representatives – Laura Ferrarese and Patrick Hall – or your MSE Science Advisory Group members – Sarah Gallagher and Kim Venn.

CATAC Update on the Thirty Meter Telescope

By / par Michael Balogh (CATAC Chair)
(Cassiopeia – Summer / été 2019)

CATAC has submitted a committee report to the LRP2020 panel. This report summarizes the recent history of Canada’s involvement with TMT, including issues related to construction and funding. It is a useful overview of our position in this important project, and is available both from the LRP panel report directory, and on our own webpage.

While the TMT International Observatory (TIO) now has the legal right to begin construction on Maunakea, there is still preparation work to be done. This includes applying for various permits which have expired and, importantly, coordinating with stakeholders including other Observatory Directors, the local police force, politicians, and residents. We expect that construction will restart sometime this northern summer.

In April CATAC published a revised draft of its recommendations on TMT instrumentation after first light. This was presented during the ACURA lunch session on Wed June 19, at this year’s annual CASCA meeting at McGill. A discussion was started at that session, but it is not too late to send us your feedback. CATAC needs to hear your ideas and ambitions so we can help ensure Canadian interests are well represented at the Board and SAC.

The next TMT Science Forum will be November 4-6 2019, in Xiamen, China. Please consider attending! ACURA will again be providing some travel support for University-based researchers to attend this meeting. Requests can be directed to mbalogh@uwaterloo.ca.

CATAC membership:
Michael Balogh (University of Waterloo), Chair, mbalogh@uwaterloo.ca
Bob Abraham (University of Toronto; TIO SAC)
Stefi Baum (University of Manitoba)
Laura Ferrarese (NRC)
David Lafrenière (Université de Montréal)
Harvey Richer (UBC)
Kristine Spekkens (Royal Military College of Canada)
Luc Simard (Director General of NRC-HAA, non-voting, ex-officio)
Don Brooks (Executive Director of ACURA, non-voting, ex-officio)
Rob Thacker (CASCA President, non-voting, ex-officio)
Kim Venn (Science Governor for Canada on TIO Governing Board, non-voting, ex-officio)
Stan Metchev (TIO SAC, non-voting, ex-officio)
Tim Davidge (TIO SAC Canadian co-chair; NRC, observer)
Greg Fahlman (NRC, observer)