Canadian Gemini News / Nouvelles de l’Office Gemini Canadien

By/par Stéphanie Côté (NRC Herzberg)
(Cassiopeia – Summer/été 2017)

La version française suit

Laura Ferrarese Interim Director of Gemini!

Markus Kissler-Patig, current Gemini Director, will be stepping down in July, to return to ESO. Markus’s remarkable leadership has brought many new ideas and initiatives to Gemini during his 5-years term, and we will dearly miss him. We were happy to learn that none other than astronomer extraordinaire Laura Ferrarese from NRC-Herzberg will be taking the helm of Gemini as Interim Director for a one-year term! She will be serving in Hilo while an international search is underway for a new permanent Director. See the Gemini press release here. We are delighted to see Gemini in very capable Canadian hands in the year to come.

New Next Instrument announced: introducing OCTOCAM!

The next instrument to be built as a facility instrument for Gemini has been selected, it will be OCTOCAM. The PI is Antonio de Ugarte Postigo (IAA) with co-PI Pete Roming (Southwest Research Institute). It is an 8-channel imager and spectrograph that will simultaneously observe the g, r, i, z, Y, J, H, and Ks bands in a square field-of-view of 3′x3′, or a circular one with a diameter of 4.24′. It can also do long slit (3′ long) spectroscopy with a resolution of R ~ 4,000, simultaneously covering the range between 0.37 – 2.35 microns.

The eight independent arms in OCTOCAM allow the user to adjust exposure times in each bandpass for increased efficiency and the best match to observing conditions. By using state of the art detectors – frame transfer in the optical and CMOS (complementary metal-oxide semiconductor) in the near infrared – OCTOCAM will have negligible readout times enabling high time-resolution observations (< 50 ms for a 30x30 pixel window). This temporal resolution will open up a new region of observation space.

Figure 1- OCTOCAM’s light path: the near-infrared optical bench (on top) will be cryogenically cooled. The visible optical bench (bottom) will be at ambient temperature. The instrument is simple and compact, with a minimum number of moving parts. Image Credit: A.de Ugarte Postigo

Figure 1- OCTOCAM’s light path: the near-infrared optical bench (on top) will be cryogenically cooled. The visible optical bench (bottom) will be at ambient temperature. The instrument is simple and compact, with a minimum number of moving parts. Image Credit: A.de Ugarte Postigo

Maunakea Dunlap Summer School students get VIP visit to Gemini

In order to insure that our Canadian observatories keep their leadership position, making Canadian research shine in tomorrow’s astronomical world, the contribution and training of young Canadian astronomers must be fostered through continued interactions. The Maunakea Dunlap Graduate School (MKDS) aims to expose Canadian astronomy graduate students to world-class instrumentation on site where they can participate in observations and data acquisition and processing, learn about the latest instrumentation, and interact with scientific and technical staff. Seven students from various Canadian universities participated in the 2017 MKDS last May, spending 10 days at the Gemini and CFHT headquarters and visiting various Maunakea Observatories, including the Gemini Northʻs Hilo Base Facility (HBF) and Gemini North’s summit telescope facility. At Gemini, students attended lectures by Gemini astronomers Laure Catala, André-Nicolas Chené, Inger Jorgensen, and Meg Schwamb who shared highlights on Geminiʻs recent science and instrumentation news. Students also acquired data using GMOS (under 0.5″ seeing!) and received instructions about data reduction. Similar equally successful and rewarding activities took place at CFHT. In addition to visiting and using CFHT and Gemini, students were able to visit the JCMT, Keck, and Subaru telescopes. This project is led by Prof. Stéphane Courteau at Queen’s University and Prof. Suresh Sivanandam at the Dunlap Institute. Canadian students wanting to participate in future MKDS must first attend the Dunlap Summer School on Astronomical Instrumentation.

Figure 2- Happy canadian students on their Gemini visit. Front row, left to right: Jonathan Saint-Antoine, Mie Beers, Vincent Chambouleyron, Nikhil Arora, Deborah Lockhorst, Taylor Roberton, Katie Harris. Back row, left to right: Gemini Public Information and Outreach Manager Peter Michaud, Suresh Sivanandam (Dunlap Institute), Stephane Courteau (group leader, Queen’s University), and Gemini Director Markus Kissler-Patig. Image Credit: Gemini Observatory/AURA

Figure 2- Happy canadian students on their Gemini visit. Front row, left to right: Jonathan Saint-Antoine, Mie Beers, Vincent Chambouleyron, Nikhil Arora, Deborah Lockhorst, Taylor Roberton, Katie Harris. Back row, left to right: Gemini Public Information and Outreach Manager Peter Michaud, Suresh Sivanandam (Dunlap Institute), Stephane Courteau (group leader, Queen’s University), and Gemini Director Markus Kissler-Patig. Image Credit: Gemini Observatory/AURA

Recent Canadian Gemini Press Releases

  • At the January 2017 AAS a team lead by Shriharsh Tendulkar (McGill) and including Victoria Kaspi (McGill) and Paul Scholz (NRC) presented the first optical follow-up of a Fast Radio Burst. Fast radio bursts (FRBs) are bright (~ Jy) and short (~ ms) bursts of radio emission, of which 18 have been detected over the past 10 years, but that had remained so far of unknown origin. FR121102 is the only repeat FRB for which it was then possible to get an accurate position (of 100 mas precision) thanks to VLA follow-up. Gemini then provided the crucial rapid follow-up to produce the first optical imaging and spectroscopy of a FRB. The Gemini data revealed that the FRB host is a small unassuming dwarf galaxy at z = 0.19, with a diameter of < 4 kpc and about 1% the mass of the Milky Way. This was surprising as it was assumed so far that most FRBs would come from large galaxies with more neutron stars (the top candidates to explain FRBs). This hints that FRBs may rather be linked to long-duration gamma-ray bursts and superluminous supernovae which frequently occur in dwarf galaxies. The paper published in ApJ is available here.
  • Figure 3 -Gemini composite image of the field around FRB 121102 (indicated). The dwarf host galaxy was imaged, and spectroscopy performed, using GMOS on the Gemini North telescope. Image Credit: Gemini Observatory/AURA/NSF/NRC

    Figure 3 -Gemini composite image of the field around FRB 121102 (indicated). The dwarf host galaxy was imaged, and spectroscopy performed, using GMOS on the Gemini North telescope. Image Credit: Gemini Observatory/AURA/NSF/NRC

  • In April an international team led by Wesley Fraser (Queen’s University, Belfast, UK) and including Brett Gladman (UBC), JJ Kavellars and Stephen Gwyn (NRC) had a press release with results from Gemini Large and Long Program “Colours of the Outer Solar System Object Survey” (Col-OSSOS). They studied a small population of blue-colored loosely-bound pairs of planetoids, hiding amongst the mainly red-colored Cold Classical Kuiper Belt objects. While the red CCKBOs are thought to have formed in their current location in the middle of the Kuiper Belt, this study suggests that the blue binaries actually formed in a region much closer to the Sun, and were then pushed out to their current location. This research indicates that when Neptune moved from 20 AU to its current location at 30 AU, several billions of years ago, this was a very slow and calm movement, which allowed the fragile and loosely bound binaries to be swept out a similar distance to where they are found currently without being disrupted into two separate single objects. The Nature Astronomy paper is available here.

Join the thousands and thousands of Gemini Observatory followers on Facebook https://www.facebook.com/GeminiObservatory and Twitter @GeminiObs



Laura Ferrarese Directrice Intérimaire de Gemini!

Markus Kissler-Patig, directeur actuel de Gemini, va se retirer de ses fonctions en juillet pour retourner à ESO. Le leadership remarquable de Markus a apporté de nombreuses nouvelles idées et initiatives à Gemini pendant son mandat de 5 ans, et il nous manquera beaucoup. Nous avons été heureux d’apprendre que nul autre que l’astronome exceptionnelle Laura Ferrarese du CNRC-Herzberg prendra la tête de Gemini comme directrice intérimaire pour un mandat d’un an! Elle servira à Hilo alors qu’une recherche internationale est en cours pour un nouveau directeur permanent. Consultez le communiqué de presse de Gemini ici. Nous sommes ravis de voir Gemini dans des mains canadiennes si compétentes dans l’année à venir.

Prochain nouvel instrument: voici OCTOCAM!

Le prochain instrument qui sera construit en tant qu` instrument de base pour Gemini a été sélectionné, ce sera OCTOCAM. Le PI est Antonio de Ugarte Postigo (IAA) avec le co-PI Pete Roming (Southwest Research Institute). Il s’agit d’un imageur et d’un spectrographe à 8 canaux qui observeront simultanément les bandes g, r, i, z, Y, J, H et Ks dans un champ de vision carré de 3′x3′ ou une circulaire de diamètre de 4,24 minutes d`arc. Il peut également faire de la spectroscopie à fente longue (sur 3′) avec une résolution de R ~ 4,000, couvrant simultanément la plage spectrale de 0,37 à 2,35 microns.

Les huit bras indépendants d’ OCTOCAM permettent à l’utilisateur d’ajuster les temps d’exposition dans chaque bande passante pour une efficacité accrue et une meilleure adaptation aux conditions d’observation. En utilisant des détecteurs de pointe – transfert de trâme dans l’optique et CMOS (semi-conducteur d’oxyde de métal complémentaire) dans l’infrarouge proche – OCTOCAM aura des temps de lecture négligeables permettant des observations à haute résolution de temps (< 50 ms pour une fenêtre de 30x30 pixels). Cette résolution temporelle ouvrira une nouvelle région d'espace d'observation.

Figure 1- Le trajet optique d'OCTOCAM: le banc optique en infrarouge proche (en haut) sera refroidi cryogéniquement. Le banc optique en visible (en bas) sera à température ambiante. L'instrument est simple et compact, avec un minimum de pièces mobiles. Crédit d'image: A.de Ugarte Postigo

Figure 1- Le trajet optique d’OCTOCAM: le banc optique en infrarouge proche (en haut) sera refroidi cryogéniquement. Le banc optique en visible (en bas) sera à température ambiante. L’instrument est simple et compact, avec un minimum de pièces mobiles. Crédit d’image: A.de Ugarte Postigo

Les étudiants du Maunakea Dunlap Summer School font une visite VIP à Gemini

Afin d’assurer que nos observatoires canadiens conservent leur position de leaders, et que la recherche canadienne continue de rayonner dans le monde astronomique de demain, la contribution et la formation des jeunes astronomes canadiens doivent être favorisées par des interactions continues. La Maunakea Dunlap Graduate School (MKDS) vise à exposer les étudiants diplômés canadiens en astronomie à l’instrumentation de classe mondiale in-situ où ils peuvent participer aux observations et à l’acquisition et au traitement de données, en apprendre davantage sur les derniers instruments de pointe, tout en interagissant avec le personnel scientifique et technique. Sept étudiants de diverses universités canadiennes ont participé au MKDS de 2017 en mai, en passant 10 jours au quartier général de Gemini et CFHT et en visitant divers observatoires au Maunakea, y compris la base de Gemini Nord à Hilo (HBF) ainsi que le télescope Gemini Nord au sommet. À Gemini, les étudiants ont assisté à des conférences par les astronomes Laure Catala, André-Nicolas Chené, Inger Jorgensen et Meg Schwamb qui ont partagé des points saillants sur les dernières nouvelles scientifiques et instrumentales de Gemini. Les étudiants ont également acquis des données avec GMOS (sous un seeing de moins de 0,5″!) et ils ont reçu des instructions sur la réduction de données. Des activités toutes aussi réussies et enrichissantes ont eu lieu à CFHT. En plus de visiter et utiliser CFHT et Gemini, les étudiants ont pu visiter les télescopes JCMT, Keck et Subaru. Ce projet est dirigé par le Professeur Stéphane Courteau de l’Université Queen’s et le Professeur Suresh Sivanandam de l’Institut Dunlap. Les étudiants canadiens qui souhaitent participer au futur MKDS doivent d’abord fréquenter l’école d’été Dunlap d’instrumentation astronomique.

Figure 2-Étudiants canadiens heureux de leur visite à Gemini. Première rangée, de gauche à droite: Jonathan Saint-Antoine, Mie Beers, Vincent Chambouleyron, Nikhil Arora, Deborah Lockhorst, Taylor Roberton, Katie Harris. En arrière, de gauche à droite: Responsable de l’Information et la Vulgarisation à Gemini, Peter Michaud, Suresh Sivanandam (Dunlap Institute), Stéphane Courteau (chef du groupe, Queen's University) et Directeur de Gemini Markus Kissler-Patig. Crédit d'image: Observatoire Gemini / AURA

Figure 2-Étudiants canadiens heureux de leur visite à Gemini. Première rangée, de gauche à droite: Jonathan Saint-Antoine, Mie Beers, Vincent Chambouleyron, Nikhil Arora, Deborah Lockhorst, Taylor Roberton, Katie Harris. En arrière, de gauche à droite: Responsable de l’Information et la Vulgarisation à Gemini, Peter Michaud, Suresh Sivanandam (Dunlap Institute), Stéphane Courteau (chef du groupe, Queen’s University) et Directeur de Gemini Markus Kissler-Patig. Crédit d’image: Observatoire Gemini / AURA

Communiqués de presse canadiens récents

  • Au AAS de janvier 2017, une équipe dirigée par Shriharsh Tendulkar (McGill) et incluant Victoria Kaspi (McGill) et Paul Scholz (NRC) a présenté le premier suivi optique d’un Fast Radio Burst. Ces explosions radio rapides (FRB) sont de puissantes (~ Jy) et très courtes (~ ms) émissions radio, dont 18 ont été détectées au cours des 10 dernières années, mais qui sont restées jusqu’à présent d’origines inconnues. FR121102 est la seule FRB répétitive pour laquelle il a été alors possible d’obtenir une position précise (à une précision de 100 mas) grâce à un suivi VLA. Gemini a ensuite fourni le suivi crucial rapide pour produire la première imagerie optique et spectroscopie d’un FRB. Les données de Gemini ont révélé que l’hôte du FRB est une petite galaxie naine sans prétention à z = 0,19, avec un diamètre <4 kpc et environ 1% de la masse de la Voie Lactée. Ceci est surprenant car on avait supposé jusqu'à présent que la plupart des FRB viendraient de grandes galaxies avec plein d'étoiles à neutrons (les meilleurs candidates pour expliquer les FRB). Cela indique que les FRB pourraient plutôt être liés à des rayonnements de rayons gamma de longue durée et à des supernovae superlumineuses qui se produisent fréquemment dans des galaxies naines. L’article publié dans ApJ est disponible ici.
  • Figure 3 - Image composite de Gemini du champ autour de FRB 121102 (indiqué). La galaxie naine hôtesse du FRB a été imagée, et des spectres ont aussi été obtenus, grâce à GMOS sur le télescope Gemini-Nord. Crédit d'image: Observatoire Gemini / AURA / NSF / NRC

    Figure 3 – Image composite de Gemini du champ autour de FRB 121102 (indiqué). La galaxie naine hôtesse du FRB a été imagée, et des spectres ont aussi été obtenus, grâce à GMOS sur le télescope Gemini-Nord. Crédit d’image: Observatoire Gemini / AURA / NSF / NRC

  • En avril, une équipe internationale dirigée par Wesley Fraser (Queen’s University, Belfast, Royaume-Uni) et incluant Brett Gladman (UBC), JJ Kavellars et Stephen Gwyn (NRC) ont émis un communiqué de presse sur les résultats de leur Programme Long et Large à Gemini “Colours of the Outer Solar System Object Survey” (Col-OSSOS). Ils ont étudié une petite population de paires de planétoïdes faiblement liées de couleur bleue, se cachant parmi les objets de la Ceinture de Kuiper Classique froide (CCKBO) qui sont principalement rouges. Alors que les CCKBO rouges sont censés s’être formés dans leur emplacement actuel au milieu de la ceinture de Kuiper, cette étude suggère que les binaires bleus se sont formés dans une région beaucoup plus proche du Soleil, et ont ensuite été poussés à leur emplacement actuel. Cette recherche indique que lorsque Neptune est passé de 20 UA à son emplacement actuel à 30 UA, il y a plusieurs milliards d’années, cela s’est produit par un mouvement très lent et calme qui a permis aux paires fragiles et faiblement liées d’être balayées d’une distance similaire pour se retrouver à leur emplacement actuel sans être séparées en deux objets individuels distincts. L’article Nature Astronomy est disponible ici.

Rejoignez les milliers et milliers de followers de l’Observatoire Gemini sur Facebook https://www.facebook.com/GeminiObservatory et Twitter @GeminiObs

Bookmark the permalink.

Comments are closed.