NRC Herzberg News/Nouvelles du CNRC Herzberg

From/de Dennis Crabtree (NRC-Herzberg)
with contributions from/avec des contributions de Lewis Knee & Chris Willott

(Cassiopeia – Summer/été 2016)

La version française suit

These reports will appear in each issue of Cassiopeia with the goal of informing the Canadian astronomical community on the activities at NRC Herzberg.

Feedback is welcome from community members about how NRC Herzberg is doing in fulfilling our mandate to “operate and administer any astronomical observatories established or maintained by the Government of Canada” (NRC Act).

Canadian Time Allocation Committee (CanTAC)

CanTAC met in May at McGill in Montreal to discuss and rank CFHT and Gemini proposals for semester 2016B. The CanTAC SuperChair for this meeting was Scott Chapman (Dalhousie), while the Galactic panel chair was Stanimir Metchev (Western) and the Extragalactic panel chair was Alan McConnachie (NRC Herzberg). Dennis Crabtree continues to serve as the technical secretary.

The full list of CanTAC members for the November meeting was:

Galactic Extragalactic
Laurent Drissen (Laval) Peter Capak (Caltech)
Christopher Johns-Krull (Rice) Scott Chapman (Dalhousie)
Stanimir Metchev (Western) Julie Hlavacek-Larrondo (Montreal)
Leslie Rogers (Caltech) Alan McConnachie (Herzberg)
Samar Safi-Harb (Manitoba) Eric Steinbring (NRC)
Ingrid Stairs (UBC) Ludo van Waerbake (UBC)
Peter Stetson (Herzberg)

For Semester 2016B CanTAC received 29 CFHT proposals (13 Galactic and 16 Extragalactic) and 25 Gemini proposals (11 Galactic and 14 Extragalactic). There was a total of 538 hours requested on CFHT and 371 hours on Gemini. The subscription rates were 2.15 for CFHT, 2.6 for Gemini North and 3.2 for Gemini South.

The demand for both telescopes increased significantly from the last semester although the trend of receiving more Galactic than Extragalactic proposals continues.

Millimetre Instrumentation Group Update

The Millimetre Instrumentation Group (MIG) at NRC Herzberg in Victoria is involved in a number of technical developments for centimetre- to millimetre-wavelength astronomy.


Support of the ALMA Band 3 (84 to 116 GHz) suite of receivers continues. The Band 3 cartridges are proving to be reliable and robust – significantly fewer receiver cartridges are returning to Victoria than originally anticipated. Recently, MIG delivered the first cartridge to Chile upgraded with magnetic field-defluxing heaters. Initial test results look promising, and a continuing series of noise temperature and power stability measurements is ongoing in order to confirm enhanced performance of the upgraded cartridge.

The ALMA Board has approved the Band 1 development project to go into cartridge production after a successful critical design review in Taipei. The Band 1 project is led by the East Asian ALMA partner. NRC Herzberg is contributing the Band 1 orthomode transducers (OMTs), passive waveguide structures which separate the two orthogonal linearly polarized components of the incoming signal before mixing and sideband separation.

Low Noise Amplifiers

Cryogenic low noise amplifiers (LNAs) are at the heart of radio receivers, and are one of the critical components which determine the overall sensitivity of the system. NRC Herzberg is at the forefront of radio astronomy LNA design. MIG has designed LNAs to be used in the 64-antenna South African meerKAT array, an SKA precursor instrument. In L-band (900 – 1670 MHz), our LNAs deliver high gain and stable performance while adding only ~ 2.5 K to the system noise temperature. A prototype meerKAT L-band receiver incorporating our LNAs recently tested on NRC’s DVA1 antenna in Penticton has confirmed a world-beating total receiver noise of only 6 K. NRC’s UHF-band (580 – 1015 MHz) meerKAT LNAs have a noise temperature of only ~ 1.0 K.

Cryogenic Phased Array Feeds

Figure 1 - Cutaway view of the NRC Herzberg cryogenic PAF.

Figure 1 – Cutaway view of the NRC Herzberg cryogenic PAF.

A number of groups worldwide are working on the development of phased array feed (PAF) receivers, which have the potential to outperform conventional single-pixels feeds in radio mapping if (among other factors), good sensitivity can be achieved. Designing and constructing efficient PAFs is a real challenge, and both lower-frequency (L-band, ~ 1.4 GHz) uncooled PAFs and higher-frequency (2.8 – 5.2 GHz) cryogenic PAFs are under development at NRC Herzberg in Penticton and Victoria respectively. The MIG’s cryogenic PAF is in an advanced stage of design with the construction and integration of component parts scheduled to begin this year. It is hoped that the completed PAF will attain very low-noise performance of ~ 10 K and thus demonstrate that PAFs can compete with single-pixel receivers in this frequency range.

In Figure 1, the 140-element array of dual-linear Vivaldi antennas at top is below a hemispherical radome. The 96 interior elements (gold) are active with a surrounding "guard ring" of inactive elements. The array of LNAs (partially obscured) lies directly below the antenna array and the coaxial lines extend downward and eventually out of the dewar. Note that in reality the coaxial lines will not be straight but will have bends to allow for thermal contraction when cooled to 16 K. The antenna array has an overall diameter of 31 cm.

JWST Update

Figure 2 - A rare view of the James Webb Space Telescope face-on in the Goddard clean room (May 2016).

Figure 2 – A rare view of the James Webb Space Telescope face-on in the Goddard clean room (May 2016).

Critical hardware of the James Webb Space Telescope (JWST) has come together in the last six months. The gold-coated primary segments, secondary and tertiary mirrors are installed onto the telescope structure. The science instruments emerged in excellent health from their final cryo-vacuum test and are mounted into the cavity behind the telescope. The whole telescope will undergo a series of environmental tests at Goddard Space Flight Center before heading to Johnson Space Center for final cryo-vacuum testing next year. Manufacturing of the sunshield and spacecraft also continue to make good progress with the schedule still being for launch in October 2018.

The Cycle 1 Call For Proposals is planned to be issued in late 2017 and many in the community are starting to make plans for how they will use the telescope. The Université de Montréal will host the conference “Exploring the Universe with JWST – II” the week of 24th to 28th October 2016. The idea of the conference is to give the astronomical community opportunities to present, highlight and discuss scientific programs that will be made possible by JWST. We hope to see many Canadians at the conference. Register here by 15th July.

In May 2016, NRC Herzberg Victoria hosted a meeting of all the JWST Guaranteed Time Observer (GTO) teams. There were about 80 attendees representing all the instrument teams and scientists with GTO allocations. The goal of the meeting was to coordinate the various science programs to make the most effective use of the observatory and provide feedback on the observation implementation process. The meeting was very successful and there is a high level of collaboration and coordination between the teams.

Les rubriques qui suivent reviendront dans chaque numéro du bulletin et ont pour but de tenir les astronomes canadiens au courant des activités de CNRC Herzberg.

Les commentaires des astronomes sur la manière dont CNRC Herzberg accomplit sa mission, c’est-à-dire « assurer le fonctionnement et la gestion des observatoires astronomiques mis sur pied ou exploités par l’État canadien » (Loi sur le CNRC), sont les bienvenus.

Comité canadien d’attribution de temps (CanTAC)

Les membres du CanTAC se sont réunis en mai à l’Université McGill à Montréal afin de discuter des propositions soumises pour le TCFH et l’observatoire Gemini pour le semestre 2016B, et les classer. Le super-président du CanTAC pour la réunion était Scott Chapman (Dalhousie), alors que le Groupe galactique était présidé par Stanimir Metchev (Western) et le Groupe extragalactique, par Alan McConnachie (CNRC Herzberg). Dennis Crabtree continue d’assumer le rôle de secrétaire technique.

Voici la liste complète des membres de CanTAC présents à la réunion de novembre:

Groupe galactique Groupe extragalactique
Laurent Drissen (Laval) Peter Capak (Caltech)
Christopher Johns-Krull (Rice) Scott Chapman (Dalhousie)
Stanimir Metchev (Western) Julie Hlavacek-Larrondo (Montreal)
Leslie Rogers (Caltech) Alan McConnachie (Herzberg)
Samar Safi-Harb (Manitoba) Eric Steinbring (NRC)
Ingrid Stairs (UBC) Ludo van Waerbake (UBC)
Peter Stetson (Herzberg)

Pour le semestre 2016B, CanTAC a reçu 29 propositions pour le TCFH (13 du Groupe galactique et 16 du Groupe extragalactique) ainsi que 25 propositions pour l’observatoire Gemini (11 du Groupe galactique et 14 du Groupe extragalactique). Au total, les candidats sollicitaient 538 heures d’observation au TCFH et 371 pour Gemini. Les taux d’adhésion étaient de 2,15 pour le TCFH, de 2,6 pour Gemini Nord et de 3,2 pour Gemini Sud.

Depuis le dernier semestre, la demande de temps d’observation aux deux télescopes a augmenté de façon importante, et ce, bien que la tendance à recevoir plus de propositions du Groupe galactique que du Groupe extragalactique persiste toujours.

Mise à jour du Groupe d’instrumentation millimétrique

Le Groupe d’instrumentation millimétrique de CNRC Herzberg à Victoria prend part à un certain nombre de développements techniques pour l’astronomie à ondes centimétriques et millimétriques.


L’appui apporté à la gamme de récepteurs de bande 3 de l’ALMA (84 – 116 GHz) continue. Les cartouches du récepteur de bande 3 se révèlent fiables et robustes : beaucoup moins de cartouches sont retournées à Victoria que prévu au départ. Le Groupe a récemment expédié vers le Chili la première cartouche qu’on a améliorée en lui ajoutant des radiateurs magnétiques pour l’enlèvement de flux. Les premiers résultats semblent prometteurs, et une série continue de mesures de la température de bruit et de la stabilité de puissance est en cours pour confirmer l’augmentation de la performance de la cartouche améliorée.

Le conseil d’administration de l’ALMA a donné le feu vert à la production de cartouches dans le cadre du projet de développement de bande 1, après que le composant a passé avec succès l’examen conceptuel critique à Taipei. Le projet bande 1 est dirigé par le partenaire est-asiatique de l’ALMA. CNRC Herzberg fournit les jonctions orthomodes pour la bande 1, des structures de guide d’ondes passives qui séparent les deux composants orthogonaux polarisés linéairement du signal entrant avant de les mélanger et de les séparer en bandes latérales.

Amplificateurs à faible bruit (AFB)

Les amplificateurs à faible bruit cryogéniques sont au cœur des récepteurs de radio et représentent l’un des composants critiques qui déterminent la sensibilité générale du système. CNRC Herzberg est le chef de file en matière de conception d’amplificateurs à faible bruit pour la radioastronomie. Le Groupe d’instrumentation millimétrique a conçu des AFB destinés au réseau sud-africain de 64 antennes meerKAT, un instrument précurseur du radiotélescope du « Réseau d’un kilomètre carré ». Dans la bande L (900 – 1670 MHz), nos AFB produisent un rendement stable de haut gain en ajoutant seulement ~ 2,5 K à la température de bruit du système. Un récepteur prototype meerKAT pour bande L qui comprend les AFB récemment testés sur l’antenne DVA1 du CNRC à Penticton confirme un bruit de récepteur total, le meilleur au monde, de seulement 6 K. Les AFB meerKAT utilisant la bande à ultra-haute fréquence (580 – 1015 MHz) du CNRC enregistrent une température de bruit d’environ 1 K seulement.

Sources d’alimentation de réseaux phasés cryogéniques

Figure 1 - Vue transversale des sources d’alimentation phasées cryogéniques du CNRC.

Figure 1 – Cutaway view of the NRC Herzberg cryogenic PAF.

Un certain nombre de groupes dans le monde travaillent à développer des récepteurs pour les sources d’alimentation phasées, qui ont le potentiel de faire meilleure figure que les antennes à pixel unique ordinaires pour la cartographie radio si (entre autres facteurs), une bonne sensibilité peut être obtenue. Les sources d’alimentation de réseaux phasés à fréquence inférieure (bande L, ~ 1,4 GHz) non refroidies et celles à fréquence supérieure (2,8 – 5,2 GHz) cryogéniques sont en cours d’élaboration à CNRC Herzberg à Penticton et à Victoria respectivement; leur conception et leur fabrication sont un réel défi. La source d’alimentation de réseaux phasés cryogéniques du Groupe d’instrumentation millimétrique a atteint un stade avancé de conception. La fabrication et l’intégration des composants devraient commencer cette année. On espère que les sources d’alimentation phasées définitives offriront un rendement à faibles émissions sonores (~10 K), ce qui pourrait démontrer qu’elles peuvent rivaliser avec les récepteurs à pixel unique dans cette gamme de fréquence.

Dans la Figure 1, le réseau de 140 éléments d’antennes Vivaldi linéaires doubles est situé tout au haut sous un radôme hémisphérique. Les 96 éléments intérieurs (en or) sont actifs, entourés d’un anneau de garde d’éléments inactifs. L’éventail d’amplificateurs à faible bruit (partiellement masqués) se trouve directement sous le réseau d’antennes; les câbles coaxiaux s’étendent vers le bas et éventuellement à l’extérieur du dewar. En fait, les câbles coaxiaux ne seront pas déployés en ligne droite : ils seront courbés afin de compenser la contraction thermique au moment du refroidissement à 16 K. Le diamètre de l’antenne réseau mesure 31 cm.

Mise à jour du télescope spatial James Webb

Figure 2 - Rare cliché de face du télescope spatial James Webb dans la salle blanche du centre spatial Goddard (mai 2016).

Figure 2 – A rare view of the James Webb Space Telescope face-on in the Goddard clean room (May 2016).

Des composants essentiels du télescope spatial James Webb ont été regroupés au cours des six derniers mois. Les sections du miroir primaire, recouvertes d’une couche d’or, et les miroirs secondaire et tertiaire sont fixés à l’armature du télescope. Les instruments scientifiques sont ressortis en parfaite condition du récent essai cryogénique sous vide; ils sont installés dans la cavité derrière le télescope. L’ensemble du télescope fera l’objet d’une série de tests environnementaux au Goddard Space Flight Center avant d’être expédié au Johnson Space Center afin de subir, l’an prochain, les derniers tests cryogéniques sous vide. La fabrication d’un pare-soleil et d’un engin spatial continue d’avancer à bon rythme; le lancement est toujours prévu pour octobre 2018.

L’appel de propositions du cycle 1 est prévu pour la fin de 2017. Plusieurs membres de la communauté commencent à planifier la façon dont ils utiliseront le télescope. Du 24 au 28 octobre 2016, l’Université de Montréal accueillera la conférence « Explorer l’univers avec le télescope spatial James Webb – II ». L’optique de la conférence est de donner à la communauté des astronomes l’occasion de présenter, de souligner et de discuter des programmes scientifiques qui seront rendus possibles par le télescope. Nous espérons que beaucoup de Canadiens assisteront à la conférence. Pour vous inscrire, visitez d’ici le 15 juillet.

En mai 2016, CNRC Herzberg à Victoria a organisé une réunion de toutes les équipes disposant de temps d’observation garanti au télescope spatial James Webb. Environ 80 participants ont pris part à cette réunion. Ils représentent les scientifiques et les équipes d’instruments possédant des attributions de temps d’observation garanti. L’objectif de la réunion était de coordonner les divers programmes scientifiques pour utiliser l’observatoire le plus efficacement possible et de fournir de la rétroaction sur le processus de mise en œuvre du temps d’observation. La réunion a connu un franc succès, et les équipes ont fait preuve d’un niveau élevé de collaboration et de coordination.

Bookmark the permalink.

Comments are closed.