Nouvelles du CNRC Herzberg/NRC Herzberg News

By/par Dennis Crabtree (NRC-Herzberg)
with contributions from/avec des contributions de Chris Willott

(Cassiopeia – Hivers/Winter 2015)

La version française suit

These reports will appear in each issue of Cassiopeia with the goal of informing the Canadian astronomical community on the activities at NRC Herzberg.

Feedback is welcome from community members about how NRC Herzberg is doing in fulfilling our mandate to “operate and administer any astronomical observatories established or maintained by the Government of Canada” (NRC Act).

Canadian Time Allocation Committee (CanTAC)

CanTAC met in October/November by a series of telecons to discuss and rank CFHT and Gemini proposals for semester 2016A. The CanTAC SuperChair for this meeting was Kristine Spekkens (RMC), while the Galactic panel chair was Stanimir Metchev (Western) and the Extragalactic panel chair was Scott Chapman (Dalhousie). Dennis Crabtree continues to serve as the technical secretary.

The full list of CanTAC members for the November meeting was:

Galactic Extragalactic
David Bohlender (Herzberg) Arif Babul (Victoria)
Christopher Johns-Krull (Rice) Peter Capak (Caltech)
Stanimir Metchev (Western) Scott Chapman (Dalhousie)
Leslie Rogers (Caltech) Alan McConnachie (NRC Herzberg)
Samar Safi-Harb (Manitoba) Kristine Spekkens (RMC)
Ingrid Stairs (UBC) Ludo van Waerbake (UBC)
Peter Stetson (Herzberg)

For Semester 2016AB CanTAC received 40 CFHT proposals (25 Galactic and 15 Extragalactic) and 46 Gemini proposals (26 Galactic and 20 Extragalactic). There was a total of 615 hours requested on CFHT and 606 hours on Gemini. The subscription rates were 2.73 for CFHT, 2.6 for Gemini North and 3.2 for Gemini South.

The demand for both telescopes increased significantly from the last semester although the trend of receiving more Galactic than Extragalactic proposals continues. CanTAC felt the quality of proposals was quite high this semester.

CADC

The CADC developed the CANFAR (Canadian Advanced Network for Astronomical Research) computing infrastructure system for astronomers. CANFAR provides its users easy access to very large resources for both storage and processing, using a cloud based framework. The current system uses a mix of internal CADC resources and Compute Canada’s national computing resources to store and make available approximately a Petabyte of observational data, as well as significant computing resources.

NRC Herzberg received NRC investment money to enable the transfer of the bulk of the hardware and service needs of the CANFAR Network Enabled Platform from NRC-Herzberg to Compute Canada. The CADC has worked with Compute Canada to develop a detailed statement of work for the CADC/CANFAR/CC Transition Project (C3TP). This is a shared co-development project in which Compute Canada will develop generic cloud and data services which can be used by a suitably modified CANFAR system to provide specific functionality to CADC’s community. The CADC will work with Compute Canada to design these generic services.

JWST

The Canadian FGS/NIRISS leads discussing detector tuning data at the JWST Cryo-Vacuum 3 Test at Goddard Space Flight Center, Maryland in November 2015. From left to right, René Doyon (FGS/NIRISS Principal Investigator, Université de Montréal), Begoña Vila (CV3 Test Lead, NASA), Chris Willott (FGS/NIRISS Instrument Scientist, NRC) and Neil Rowlands (FGS/NIRISS Project Scientist at COM DEV International).

The Canadian FGS/NIRISS leads discussing detector tuning data at the JWST Cryo-Vacuum 3 Test at Goddard Space Flight Center, Maryland in November 2015. From left to right, René Doyon (FGS/NIRISS Principal Investigator, Université de Montréal), Begoña Vila (CV3 Test Lead, NASA), Chris Willott (FGS/NIRISS Instrument Scientist, NRC) and Neil Rowlands (FGS/NIRISS Project Scientist at COM DEV International).

It is an exciting time in the JWST project with activities on several fronts in the integration and testing phase of the observatory development. The four science instruments are midway through the third and final Cryo-Vacuum Test (CV3) at NASA’s Goddard Space Flight Center, Maryland. This 3 month long test at 40K simulates the conditions of the observatory in orbit, putting the instruments through a series of thermal, electrical and optical tests to provide flight-like data for verification and calibration. The Canadian FGS/NIRISS instrument team from the Université de Montréal, National Research Council, Canadian Space Agency, Space Telescope Science Institute and prime contractor COM DEV International are heavily involved in supporting these tests which run 24/7 for the 3 month period. At the time of writing, activities are progressing well and on schedule.

Another exciting event taking place now is the integration of the 18 primary mirror segments onto the telescope structure. Each hexagonal segment is made of lightweight beryllium with a very thin gold coating and measures 1.3 metres across. A robotic arm is used to lift and position each mirror. All 18 primary segments and the secondary mirror will be in place early in 2016. After that the fully-verified instrument module is to be installed onto the telescope.

In October 2015 the European Space Agency hosted a conference titled “Exploring the Universe with JWST”. This meeting brought together scientists from around the world to discuss how JWST will be used to tackle their science questions. Presentations can be found online at www.cosmos.esa.int/web/jwst/conferences/jwst2015 .

There is also a lot going on with the JWST ground system, in particular the pipeline, calibration and commissioning plans for the science instruments. The Canadian team is very active in all these areas to ensure that the powerful science modes of NIRISS are capitalized upon. With parallel observing now approved by the project, significant work is underway to see how NIRISS can be used in parallel to significantly enhance the efficiency of the observatory.

JWST will be launched into a halo orbit around L2 on an Ariane V rocket in October 2018.



Les rubriques qui suivent reviendront dans chaque numéro du bulletin et ont pour but de tenir les astronomes canadiens au courant des activités de CNRC Herzberg.

Les commentaires des astronomes sur la manière dont CNRC Herzberg accomplit sa mission, c’est-à-dire « assurer le fonctionnement et la gestion des observatoires astronomiques mis sur pied ou exploités par l’État canadien » (Loi sur le CNRC), sont les bienvenus.

Comité canadien d’attribution du temps d’observation (CanTAC)

Les membres du CanTAC se sont entretenus en octobre/novembre dans le cadre d’une série de téléconférences afin d’examiner et d’ordonner les demandes du semestre 2016A se rapportant aux observatoires TCFH et Gemini. Kristine Spekkens (RMC), qui agissait à titre de super-présidente à cette occasion, était appuyée par Stanimir Metchev (Western) à la tête du Groupe galactique et Scott Chapman (Dalhousie) à la tête du Groupe extragalactique. Dennis Crabtree continue de servir de secrétaire technique au Comité.

Voici la liste complète des membres du CanTAC qui ont assisté à la réunion de novembre :

Groupe galactique Groupe extragalactique
David Bohlender (Herzberg) Arif Babul (Victoria)
Christopher Johns-Krull (Rice) Peter Capak (Caltech)
Stanimir Metchev (Western) Scott Chapman (Dalhousie)
Leslie Rogers (Caltech) Alan McConnachie (NRC Herzberg)
Samar Safi-Harb (Manitoba) Kristine Spekkens (RMC)
Ingrid Stairs (UBC) Ludo van Waerbake (UBC)
Peter Stetson (Herzberg)

Le CanTAC a reçu 40 demandes pour le TCFH (25 du Groupe galactique et 15 du Groupe extragalactique), pour le semestre 2016B, et 46 pour l’observatoire Gemini (26 du Groupe galactique et 20 du Groupe extragalactique), ce qui correspond à un total de 615 heures dans le premier cas et de 606 heures dans le second. Les taux d’adhésion étaient de 2,73 pour le TCFH, de 2,6 pour Gemini Nord et de 3,2 pour Gemini Sud.

La demande de temps d’observation aux télescopes a sensiblement augmenté comparativement au semestre précédent, bien que l’on continue de recevoir plus de requêtes du Groupe galactique que du Groupe extragalactique. Le CanTAC estime que les demandes soumises ce semestre se démarquaient par leur très grande qualité.

CCDA

Le CCDA a mis au point l’infrastructure informatique CANFAR (réseau évolué du Canada pour la recherche en astronomie) destinée aux astronomes. CANFAR permet à ses utilisateurs d’accéder aisément à de très vastes ressources de stockage et de traitement des données par l’infonuagique. Le système actuel combine les ressources internes du CCDA et les installations nationales de Calcul Canada pour entreposer environ un pétaoctet d’observations et les mettre à la disposition des chercheurs, avec d’importantes ressources en calcul.

CNRC Herzberg a obtenu des fonds du CNRC pour que le gros des besoins en matériel et en services de la plateforme qu’habilite le réseau CANFAR soit confié à Calcul Canada. De concert avec cet organisme, le CCDA a élaboré un énoncé des travaux détaillé pour le projet de transition CCDA/CANFAR/CC (PTC3), projet de développement conjoint en vertu duquel Calcul Canada mettra au point des services de données et d’infonuagique génériques auxquels on accédera par le système CANFAR après son adaptation, et qui offriront des fonctionnalités précises aux membres du CCDA. Le CCDA collaborera avec Calcul Canada pour créer les services génériques en question.

JWST

Novembre 2015: le noyau de l’équipe FGS/NIRISS discute des ajustements de détecteur dans le cadre de la troisième campagne de tests (CV3) des instruments du JWST qui ont cours au Goddard Space Flight Centre de la NASA (MD, É.U). Dans l’ordre habituel, René Doyon (chercheur principal du FGS/NIRISS; Université de Montréal), Begoña Vila (leader des tests CV3, NASA), Chris Willott (scientifique responsable de l’instrument FGS/NIRISS; NRC-H) et Neil Rowlands (scientifique responsable du projet FGS/NIRISS chez COM DEV International).

Novembre 2015: le noyau de l’équipe FGS/NIRISS discute des ajustements de détecteur dans le cadre de la troisième campagne de tests (CV3) des instruments du JWST qui ont cours au Goddard Space Flight Centre de la NASA (MD, É.U). Dans l’ordre habituel, René Doyon (chercheur principal du FGS/NIRISS; Université de Montréal), Begoña Vila (leader des tests CV3, NASA), Chris Willott (scientifique responsable de l’instrument FGS/NIRISS; NRC-H) et Neil Rowlands (scientifique responsable du projet FGS/NIRISS chez COM DEV International).

Le projet JWST traverse un moment palpitant, car les activités se multiplient sur plusieurs fronts dans la phase d’intégration et d’essais de l’observatoire. Les quatre instruments scientifiques en sont à mi-chemin du troisième et dernier essai cryogénique sous vide (CV3) au Goddard Space Flight Center de la NASA, au Maryland. Cette épreuve de trois mois, réalisée à la température de 40 K, simule les conditions d’un observatoire spatial, ce qui obligera les instruments à subir une batterie de tests thermiques, électriques et optiques, et à fournir des données semblables à celles qui seront acquises en orbite, en vue de leur vérification et d’un étalonnage. L’équipe de l’instrument canadien FGS/NIRISS, composée de membres de l’Université de Montréal, du Conseil national de recherches, de l’Agence spatiale canadienne, du Space Telescope Science Institute et de COM DEV International, le maître d’œuvre, est fortement impliquée dans ces tests qui dureront trois mois, sans interruption. Au moment où j’écris ceci, les activités progressent bien et aucun retard n’a été enregistré.

Un autre fait fort intéressant en train de se produire concerne l’intégration des dix-huit éléments du miroir primaire à l’armature du télescope. Mesurant 1,3 m de diamètre, chaque partie hexagonale du miroir est composée de béryllium, métal très léger, et recouvert d’une mince couche d’or. Un bras robotisé soulève et place chaque élément. Les 18 sections du miroir primaire et le miroir secondaire devraient être en place au début de 2016. Suivra l’installation du module instrumental, après les vérifications d’usage.

En octobre 2015, l’Agence spatiale européenne organisait un colloque qui avait pour thème l’exploration de l’univers avec le JWST. Des scientifiques du monde entier y ont assisté, anxieux de savoir comment on utiliserait le JWST pour répondre à leurs questions. Les exposés donnés au colloque peuvent être consultés au www.cosmos.esa.int/web/jwst/conferences/jwst2015.

Beaucoup de choses se passent également du côté des installations terrestres du JWST, notamment le pipeline, l’étalonnage des instruments scientifiques et les plans en vue de leur mise en service. L’équipe canadienne s’active fort dans tous ces domaines pour s’assurer qu’on exploitera toute la puissance des modes scientifiques du NIRISS. Les observations en parallèle ayant désormais été autorisées dans le cadre du projet, on a entrepris d’importants travaux pour établir si le NIRISS pourrait être utilisé en parallèle afin de rehausser sensiblement l’efficacité du télescope.

Le JWST sera lancé sur son orbite en halo autour de L2 avec une fusée Ariane V en octobre 2018.

Bookmark the permalink.

Comments are closed.