MSE Update

Submitted by Patrick Hall, MSE Advisory Group member, Pat Cote (NRC), MSE Advisory Group member, Michael Balogh (Waterloo), Canada Contact Scientist on the MSE Science Executive
(Cassiopeia – Autumn/Automne 2015)

Maunakea Spectroscopic Explorer: Update, Mailing List, and Canadian MSE Team

Want to receive E-mail updates on MSE? Sign up for the CDN-MSE mailing list at MSE Forum; you’ll need to confirm your sign-up when you receive a confirmation E-mail (usually within a day). If you experience problems, contact cdnmse@gmail.com.

In early 2014 the CFHT Board of Directors approved funding for an independent Maunakea Spectroscopic Explorer (MSE) Project Office to develop the concept for replacing the current 3.6-meter CFHT into a full construction proposal by late 2017. Since that time, the MSE project has made great progress in its Design Phase.

It has been established that MSE will be a dedicated spectroscopic 11.25-meter telescope (with a 10-meter effective aperture), making it the largest non-ELT telescope in existence. The current MSE design calls for:

  • A 1.5 square degree field of view, for an etendue of 117 m2 deg2
  • 3468 fibers feeding low-resolution (R~3,000) spectrographs covering 0.37 to 1.26 microns at least (possibly out to 1.8 microns)
  • A moderate-resolution (R~6000) mode with wavelength coverage still to be defined
  • 1156 fibers feeding high-resolution (R~40,000) spectrographs.

The MSE design phase collaboration includes in-kind engineering contributions from Australia, Canada, China, France, Hawaii and India, and 84 scientists from 14 countries are participating in the MSE Science Team. The Detailed Science Case, Science Requirements Document and other foundational documents are being finalised and will be made available later in the Fall. Please see Documents for the latest documentation.

The first annual MSE Science Team meeting was held this past July on the Big Island of Hawaii. Meeting presentations are available for download at Science meeting including details on Science Reference Observations addressing a wide range of scientific topics:

  • SRO-1: Exoplanets and stellar velocity variability
  • SRO-2: Revealing the physics of rare stellar types
  • SRO-3: The formation and chemical evolution of the Galaxy
  • SRO-4: Unveiling cold dark matter substructure with precision stellar kinematics
  • SRO-5: Chemo-dynamical deconstruction of Local Group galaxies
  • SRO-6: The baryonic content and dark matter distribution of the nearest massive clusters
  • SRO-7: Galaxies and their environments in the nearby Universe
  • SRO-8: Multi-scale clustering and the halo occupation function
  • SRO-9: The chemical evolution of galaxies and AGN
  • SRO-10: Mapping the inner parsec of quasars through reverberation mapping
  • SRO-11: Linking galaxy evolution with the IGM through tomographic mapping
  • SRO-12: A peculiar velocity survey out to 1 Gpc and the nature of the CMB dipole

A Design Reference Mission is currently being assembled, composed of these SROs uniquely possible with MSE.

Of course, moving MSE from the design phase into the construction phase to make its science a reality will depend on fulfilling requirements under a new Master Lease which is currently under discussion for the University of Hawaii’s hosting of Maunakea observatories, and on identifying funding from partner countries.

Canadian astronomers who are interested in the science that will be enabled by MSE are invited to join a small group who will keep national and local communities updated on MSE’s progress, promote the project to the public, and lay the groundwork for eventual funding proposals. If you are interested in joining this Canadian MSE Team, please contact Patrick Hall at yorkphall@gmail.com.

MSE website: http://mse.cfht.hawaii.edu/

NRC Herzberg News/Nouvelles du CNRC Herzberg

By/par Dennis Crabtree (NRC-Herzberg)
with contributions from/avec des contributions de David Bohlender, Greg Burley, Alan McConnachie, and Dmitry Monin

(Cassiopeia – Autumn/Automne 2015)

La version française suit

These reports will appear in each issue of E-Cass with the goal of informing the Canadian astronomical community on the activities at NRC Herzberg. Feedback is welcome from community members about how NRC Herzberg is doing in fulfilling our mandate to “operate and administer any astronomical observatories established or maintained by the Government of Canada” (NRC Act).

General News

A BC-registered non-profit organization, Friends of the Dominion Astrophysical Observatory Society, has been formed. The main purposes of this new organization are to “promote interest and awareness of the DAO” and to restart the public education and outreach activities provided by the Centre of the Universe which NRC Herzberg closed in 2013 due to budget limitations. The organization has a website (Friends of the DAO) and is also on Facebook (www.facebook.com/FriendsDAO).

DAO Telescopes

The venerable DAO 1.2-m and 1.8-m telescopes continue to operate on every clear night in Victoria and we encourage new users and especially students to consider applying for time. The telescopes are scheduled on a quarterly basis with proposal deadlines nominally one month prior to the start of each calendar quarter.

Robotic operations are proving to be very popular on the 1.2-m telescope with typically 60% of the nights scheduled for automatic operation. While this telescope has no imaging capabilities, its McKellar spectrograph offers a large number of grating and camera configurations to provide spectra with dispersions between 2.4 and 40.9 Å/mm. Wavelength coverage is limited by the SITe-4 CCD’s 60 mm length. In good conditions during robotic nights we regularly obtain spectra for objects as faint as V = 11, mainly for radial velocity measurements using a cross-correlation analysis. Re-aluminizing of the primary mirror will take place in September.

Now in its 97th year of operation the 1.8-m Plaskett telescope offers users imaging, spectroscopy and spectropolarimetric capabilities. Spectroscopic programs (with a choice of dispersions between 10 and 120 Å/mm) continue to be most popular with the telescope but for several years about 20% of the time has been allocated to programs that use the dimaPol polarimeter module. This provides circular polarization measurements of a 300 Å region entered on the H-beta line and is being used to search for new magnetic upper main sequence stars as a complement to large programs being executed at the CFHT and other observatories. Imaging at the modified Newtonian focus is also possible and the dedicated E2V-1 CCD provides a 23.9’ x 10.6’ field of view. Contract observing services are available to applicants if preferred; this can provide insurance against long stretches of bad weather, especially in the winter months, since you are billed only for useful observing hours.

Given the success of the 1.2-m telescope automation our most recent DAO development efforts are concentrating on upgrades of the Plaskett telescope, dome and control software to eventually enable similar robotic operation of the 1.8-m telescope and spectrograph or imager. A new telescope control system has been released, the dome shutter and wind curtains are now controlled through the network, a rain sensor is in operation, and an updated absolute encoder has been installed on the RA axis to greatly improve telescope tracking. We anticipate installing new limit and horizon switches in the coming months; unlike the 1.2-m we have the extra complication of having to avoid collisions of the 1.8-m telescope with the pier or dome! Once this critical protection is installed and a number of other pieces are in place we will begin testing automated (but supervised) observations during the next several semesters.

Please feel free to contact David Bohlender (david.bohlender@nrc-cnrc.gc.ca) or Dmitry Monin (dmitry.monin@nrc-cnrc.gc.ca) at NRC Herzberg for further information.

Gemini GHOST Spectrograph

The GHOST project is a partnership with AAO, ANU, NRC and Gemini to design and build a high-resolution, fiber-fed spectrograph for Gemini South. The project lead – the AAO – are developing the fiber feed and fiber injection optics, ANU are providing the software, and NRC are developing the bench spectrograph and thermal enclosure. GHOST has been under intensive development and is currently nearing the end of its design phase.

The instrument includes a dual fiber feed for resolutions of 75,000 (high-resolution mode) and 50,000 (low-resolution mode). The wavelength range is from 363nm to 950nm, with the blue/red crossover at 535nm. The entire optical spectrum is obtained in a single observation. The bench spectrograph is a based on a high-efficiency echelle grating with VPH cross-dispersers. It is a dual beam (Red + Blue) optical design, with two independently operated CCD detectors to ensure high throughput across the full wavelength range.

For best instrument stability, the bench spectrograph is located in the telescope pier lab, and is housed in a temperature stabilized thermal enclosure. Although not optimized for precision radial velocities, it is expected that a radial velocity precision of a few m/s will be possible with GHOST.

Figure 1 - CAD drawing of GHOST optical bench layout

Figure 1 – CAD drawing of GHOST optical bench layout

In the design and development phase, NRC engineers have been creating the optical design and opto-mechanical layout, designing and prototyping the detector system, and working on the enclosure concept and design. Critical and final design reviews are scheduled for the end of 2015/first quarter of 2016, and first light is expected to be in early 2018.

Montreal-Ohio-Victoria Echelle Spectrograph (MOVIES)

The Montreal-Ohio-VIctoria Echelle Spectrograph (MOVIES) is a collaboration between NRC, Université de Montréal and Ohio State University, and was one of 4 feasibility studies chosen through a competitive selection process for a 6 month, CAD100K study, as part of the process initiated by Gemini to design a new “Generation 4” instrument. The Feasibility Study Report was submitted to Gemini on August 24, 2015.

MOVIES is a broad bandwidth, moderate resolution (R3 – 10K) dual arm optical and near infrared (NIR) échelle spectrograph that simultaneously covers 0.36 – 2.45μm. It is supported by a rapid acquisition camera operating simultaneously in two optical and one NIR bands. MOVIES is designed for obtaining spectra of the faint Universe with high throughput, high efficiency and high reliability.

An essential and defining characteristic of MOVIES is that it will capitalize on Gemini’s “target of opportunity” mode. MOVIES will acquire targets (including starting the acquisition exposure, reading out the images, identifying the target, centering and verifying the object in the slit, switching to guiding mode and starting the science exposure) within 90 seconds. The acquisition and guiding cameras have large fields of view (3 x 3 arcmins) to ensure good sky coverage, to facilitate precise astrometry, and to enable blind acquisition when necessary. Two optical and one near-infrared acquisition images are obtained simultaneously, to easily acquire targets with an unknown spectral distribution. Further, they are designed to be used as simultaneous multi-band imagers to obtain “one-shot color-color diagrams”, and they are an important science imaging capability in their own right.

High throughput is achieved by the dual-arm design, where optimized optics in each arm and VPH gratings minimize light loss. The design has been developed to allow for a minimum number of optical elements per arm. Detectors optimized for broad wavelength ranges in the optical and NIR are used with coatings that further enhance their efficiency. For the optical arm, an option is included of using a large format electron multiplying CCD as the primary science detector; when used in EM-mode (large gain), these detectors allow for a very significant increase in observing efficiency obtained relative to normal CCDs for faint targets.

Figure 2 - Schematic of the MOVIES spectrograph

Figure 2 – Schematic of the MOVIES spectrograph

Further, zero-read noise in these detectors gives the option of temporal and spectral binning post-processing at potentially extremely high (hertz) cadence, opening up a new domain of high cadence optical spectroscopy for energetic, variable and/or transient observations. MOVIES will be reviewed by Gemini at the end of September. For more information on any aspect of MOVIES, Canadian contacts include:

Lead (NRC): Alan McConnachie (alan.mcconnachie@nrc-cnrc.gc.ca), Lead (UdM): René Doyon (doyon@astro.umontreal.ca), Leslie Saddlemyer (Leslie.Saddlemyer@nrc-cnrc.gc.ca), Olivier Hernandez (olivier.hernandez@umontreal.ca), and Étienne Artigau (artigau@ASTRO.UMontreal.CA).



Les rubriques qui suivent reviendront dans chaque numéro du bulletin et ont pour but de tenir les astronomes canadiens au courant des activités de CNRC Herzberg. Les commentaires des astronomes sur la manière dont CNRC Herzberg accomplit sa mission, c’est-à-dire « assurer le fonctionnement et la gestion des observatoires astronomiques mis sur pied ou exploités par l’État canadien » (Loi sur le CNRC), sont les bienvenus.

Généralités

Un organisme sans but lucratif enregistré en C.-B. a vu le jour sous l’appellation Friends of the Dominion Astrophysical Observatory Society. Cet organisme a pour buts principaux de faire connaître l’Observatoire fédéral d’astrophysique (OFA) et de rehausser l’intérêt qu’on lui porte. Il relancera les activités de vulgarisation publiques au Centre de l’univers dont le CNRC avait dû fermer les portes en 2013 faute de fonds. La société possède un site Web (Friends of the DAO) et une page Facebook (www.facebook.com/FriendsDAO).

Les télescopes de l’OFA

Les vénérables télescopes de 1,2 m et de 1,8 m de l’OFA continuent d’explorer le firmament chaque nuit quand le ciel est dégagé, à Victoria, et nous encourageons les nouveaux utilisateurs, les étudiants surtout, à solliciter du temps d’observation. Le calendrier des télescopes est établi trimestriellement, les astronomes ayant jusqu’à un mois avant le début du trimestre pour soumettre leurs demandes.

La robotique est en vogue au télescope de 1,2 m, où 60 % des nuits sont typiquement consacrées aux observations automatiques. Bien que l’instrument ne soit pas doté d’un imageur, son spectrographe autorise de nombreuses configurations de réseau et d’appareil photo de manière à restituer un spectre dont la dispersion varie de 2,4 à 40,9 Å/mm. La longueur du DCC de SITe-4 (60 mm) limite toutefois les longueurs d’onde couvertes. Quand les conditions sont bonnes, les observations automatisées restituent régulièrement le spectre d’objets d’une luminosité aussi faible que V = 11, ce qui permet essentiellement de calculer la vitesse radiale par corrélation croisée. Le miroir principal du télescope recevra un nouveau revêtement d’aluminium en septembre.

Exploité depuis 97 ans, le télescope Plaskett de 1,8 m propose des services d’imagerie, de spectroscopie et de spectropolarimétrie. Les programmes spectroscopiques (dispersion de 10 à 120 Å/mm) demeurent les plus populaires, mais depuis plusieurs années, on alloue 20% du temps d’observation environ aux programmes qui recourent au polarimètre dimaPol. Ce module permet d’établir la polarisation circulaire d’une zone de 300 Å centrée sur la raie H-bêta; on s’en sert pour chercher le champ magnétique de nouvelles étoiles dans le haut de la séquence principale en complément aux grands programmes poursuivis au CFHT et dans d’autres observatoires. Le télescope autorise aussi la prise d’images au foyer de type newtonien modifié, tandis que le DCC dédié de l’E2V-1 offre un champ de vision de 23,9 pi x 10,6 pi. Les astronomes qui le préfèrent peuvent conclure une entente afin de réserver du temps d’observation. Pareille entente sert en quelque sorte d’assurance contre les périodes prolongées d’intempéries, ce qui est particulièrement commode en hiver, puisque seules les heures d’observation utiles sont facturées.

Compte tenu du succès remporté par l’automatisation du télescope de 1,2 m, les plus récents travaux de perfectionnement réalisés à l’OFA se concentrent sur le télescope Plaskett, la coupole et le logiciel de commande, l’idée étant de robotiser de la même manière le télescope de 1,8 m ainsi que son spectrographe ou son imageur. Un nouveau système de contrôle du télescope a été mis en place, l’obturateur de la coupole et les volets coupe-vent sont désormais commandés par réseau, un détecteur de pluie est en service et l’on a installé un codeur absolu plus moderne sur l’axe AR, ce qui améliore considérablement les capacités de poursuite de l’instrument. Durant les mois qui viennent, nous devrions installer de nouveaux commutateurs pour l’horizon et la limite (contrairement au télescope de 1,2 m, celui de 1,8 m pourrait heurter la coupole ou le pilier, ce qui nous complique la tâche!). Dès que ces systèmes de protection cruciaux seront fonctionnels et que quelques autres composants seront en place, nous entamerons les observations automatiques (sous surveillance) pour quelques semestres.

N’hésitez pas à communiquer avec David Bohlender (david.bohlender@nrc-cnrc.gc.ca) ou Dmitry Monin (dmitry.monin@nrc-cnrc.gc.ca) à CNRC Herzberg pour en savoir plus.

Le spectrographe GHOST de Gemini

Le projet GHOST, auquel collaborent l’AAO, l’ANU, le CNRC et les observatoires Gemini, a pour but de concevoir et de bâtir un spectrographe à haute résolution alimenté par fibre optique pour le télescope Gemini Sud. L’AAO, qui pilote le projet, met au point le système d’alimentation par fibre optique et les éléments d’optique qui injecteront la lumière dans les fibres. L’ANU procurera le logiciel et le CNRC développera le banc de spectrographie de même que l’enceinte thermique. Les travaux de développement se poursuivent rondement et l’étape conceptuelle du projet tire à sa fin.

L’instrument sera alimenté par un double système de fibres optiques autorisant une résolution de 75 000 (haute) ou de 50 000 (faible). Il couvrira les longueurs d’onde de 363 nm à 950 nm, avec décalage bleu/rouge à 535 nm. La totalité du spectre sera obtenue en une seule observation. Le spectrographe repose sur un réseau échelle à haut rendement pourvu de dispositifs VPH à dispersion croisée. Les deux faisceaux optiques (rouge et bleu) sont reliés à autant de détecteurs DCC commandés séparément, ce qui garantit un débit élevé pour toute la plage de longueurs d’onde.

Pour conférer la plus grande stabilité à l’appareil, le spectrographe a été installé au laboratoire dans le pilier du télescope, à l’intérieur d’une enceinte thermique dont on stabilise la température. Bien que le GHOST ne soit pas optimisé pour établir la vitesse radiale avec précision, on s’attend à pouvoir la mesurer à quelques m/s près.

Figure 1 - Diagramme CAO du banc optique du GHOST

Figure 1 – Diagramme CAO du banc optique du GHOST

Durant la phase de conception et de développement, les ingénieurs du CNRC ont tracé les plans des systèmes optiques et optomécaniques, ont conçu le système de détection et créé un prototype, et ont travaillé à la conception de l’enceinte. Les examens du concept des étapes critique et finale devraient avoir lieu à la fin de 2015 et au premier trimestre de 2016, avec mise en service prévue au début de 2018.

Le spectrographe MOVIES (Montreal-Ohio-Victoria Echelle Spectrograph)

Le projet MOVIES est une collaboration entre le CNRC, l’Université de Montréal et l’Université d’État de l’Ohio. Il fait partie des quatre études de faisabilité retenues au terme d’un processus de sélection par concours concernant un projet de six mois de 100 000 CAD lancé par les observatoires Gemini en vue de créer un nouvel appareil de quatrième génération. Le rapport de l’étude de faisabilité a été remis aux responsables des observatoires Gemini le 24 août 2015.

MOVIES est spectrographe échelle à grande largeur de bande et à résolution moyenne (R3 – 10K) doté d’un bras pour la lumière visible et d’un second pour le proche infrarouge couvrant simultanément les longueurs d’onde de 0,36 à 2,45 μm. S’y ajoute un appareil photo à saisie rapide fonctionnant simultanément dans deux bandes optiques et une bande du proche infrarouge. L’appareil est conçu pour capter le spectre de l’univers peu lumineux à un débit élevé, avec un fort rendement et une grande fiabilité.

Un aspect capital et caractéristique du spectrographe MOVIES est qu’il exploitera au maximum le mode « cible occasionnelle » de Gemini. Quatre-vingt-dix secondes lui suffiront pour saisir la cible (démarrer l’exposition d’acquisition, lire les images, identifier la cible, centrer l’objet dans la fente et le vérifier, passer en mode guidage et démarrer l’exposition scientifique). Les appareils photo d’acquisition et de guidage embrassent un champ de vision assez grand (3 x 3 minutes d’arc) pour que l’on couvre une bonne partie du ciel, ce qui facilitera une astrométrie précise tout en permettant une saisie aveugle au besoin. L’instrument capte simultanément deux images dans le spectre visible et une dans le proche infrarouge, si bien qu’il est facile d’acquérir des cibles dont la distribution spectrale est inconnue. Ces dispositifs sont aussi conçus pour servir d’imageurs simultanés dans de nombreuses bandes et restitueront des diagrammes couleur-couleur instantanés. En soi, leurs capacités d’imagerie revêtent une grande importance pour la science.

Le concept du double bras, dont l’optique est optimisée et où un réseau VPH minimise l’affaiblissement du signal lumineux, garantit un débit élevé, car il mise sur le principe de la minimisation des éléments d’optique dans chaque ramification. Des détecteurs optimisés pour capter une grande fourchette de longueurs d’onde dans le spectre visible et le proche infrarouge ont été rendus plus efficaces encore grâce à un revêtement spécial. Le bras du spectrographe opérant dans la lumière visible permet, si on le désire, l’usage d’un DCC multiplicateur d’électrons de grand format comme détecteur principal, à des fins scientifiques. En mode multiplication d’électrons (gain important), ces détecteurs augmentent considérablement la valeur des observations comparativement à celles qu’autorisent les DCC normaux avec les objets peu lumineux.

Figure 2 - Diagramme du spectrographe MOVIES

Figure 2 – Diagramme du spectrographe MOVIES

Par ailleurs, l’absence de parasites en lecture dans ces détecteurs permet un compartimentage temporel et spectral après traitement à un rythme (hertz) extrêmement rapide, ce qui ouvre la porte à un tout nouveau domaine : celui de la spectroscopie optique à rythme élevé pour l’observation des objets variables ou passagers très énergétiques. Le personnel de Gemini examinera le spectrographe MOVIES à la fin de septembre. Pour en savoir plus sur l’un de ses aspects, les personnes à contacter au Canada sont:

Chef (CNRC): Alan McConnachie (alan.mcconnachie@nrc-cnrc.gc.ca), chef (UdM): René Doyon (doyon@astro.umontreal.ca), Leslie Saddlemyer (Leslie.Saddlemyer@nrc-cnrc.gc.ca), Olivier Hernandez (olivier.hernandez@umontreal.ca), et Étienne Artigau (artigau@ASTRO.UMontreal.CA).

ACURA News

By Ernie Seaquist, ACURA Executive Director
(Cassiopeia – Autumn/Automne 2015)

Introduction

This is the eighth issue of the semi-annual newsletter for E-Cass readers. The intention is to keep the community up to date on the activity of ACURA. ACURA is the Association of Canadian Universities for Research in Astronomy, with a membership of 20 universities. ACURA exists to promote the interests of Canadian university astronomers, including the highest priority LRP projects requiring funding by the Federal Government. The current projects of interest to ACURA are the TMT and the SKA. ACURA also maintains an active role in advancing the interests of its member institutions in the governance of federally supported astronomy, currently undertaken by NRC.

ACURA is primarily concerned with the promotion of and participation in its two highest priorities – the Thirty Meter Telescope (TMT) and the Square Kilometre Array (SKA) following the ground based priorities for world observatories in the LRP. More on ACURA activity on these topics can be found below.

Activity on the Thirty Meter Telescope (TMT)

As almost everyone knows by now, Prime Minister Stephen Harper announced on April 6, 2015 that Canada will join as a partner in the TMT project. The amount of the commitment was up to $243.5M Canadian dollars over the period of construction (just under 10 years). This commitment provides for a share by Canada of about 15%, less than the 20% requested, but nevertheless a significant share. This represents a very large commitment by the Federal Government to investment in astronomy, and is obviously a major success for the Canadian Long Range Plan (LRP). NRC as the signing member and executive authority for Canada, in accordance with its parliamentary mandate on government funded large astronomy facilities. The efforts of ACURA, together with its Coalition partners, CASCA and Industry, were a major factor in achieving this success, as were the efforts of NRC in providing the supporting information and documentation to Industry Canada. The success of course rests on the shoulders of the many individuals who were responsible for initiating Canadian engagement in TMT and following through with the design and development work, including NRC, university scientists, and industry teams.

In the end, the government appears to have been persuaded by a number of factors, including support within ACURA universities, led by presidents Meric Gertler of the University of Toronto and Arvind Gupta of the University of British Columbia. Undoubtedly as well, the NRC commissioned industry report, Astronomy Technologies Study on the economic benefits of astronomy instrumentation development at NRC, helped to win the day. As noted in my last newsletter, this report by the Ottawa firm of Doyletech Corporation gives an excellent account of the economic benefits of the adaptive optics work stemming from the emerging new applications to fields such as medicine, the defence industry, communications, and the consumer optical market. Another supporting factor was the unwavering support of Canadian astronomers who consistently underscored that TMT is the highest priority for Canadian astronomy as outlined in the LRP. Without this, we could not have succeeded.

ACURA is now turning its attention to the follow-up, which is a plan for its engagement in TMT governance. Already the Canadian members of the Board of Governors of the newly formed TMT International Observatory (TIO) are Greg Fahlman, General Manager for NRC Herzberg, Ray Carlberg, Canadian TMT Project Director, and myself as ACURA Executive Director. Although executive authority for TMT in Canada resides with NRC, it is understood by both NRC and universities that the scientific user community needs to be heard. This can be accomplished by a role in governance of the Canadian involvement in TMT. Accordingly ACURA is meeting with NRC to outline the nature of this role. The ACURA Board and Council have also met to discuss this topic at their meetings on May 28, 2015 in Hamilton. Convergence appears to be focusing on a process of formal consultation between ACURA and NRC to ensure that the scientific goals of TMT are achieved and that the needs of the community are at the forefront. This could be accomplished by two ACURA Committees – one at the vice-presidential level to discuss strategic issues, and another at the scientific level to glean the views of the community and formulate recommendations for the strategic level committee to carry forward to NRC. The science committee would have representatives appointed by both ACURA and CASCA, and would function in a manner similar to the newly formed ACURA Advisory Council on the SKA (AACS). The new council would in fact be named AACT to represent the TMT. Discussions with NRC will continue later this fall.

Activity related to the Square Kilometre Array (SKA)

From both scientific and technical perspectives, Canada is becoming increasingly well positioned to make key contributions to the SKA. In the recent pre-construction down-select for design concepts for the components of SKA1 (phase 1 of the SKA), Canada (primarily through NRC) fared very well, and is poised to make contributions to the project in the areas of composite antennas, correlators and beam-formers, low noise amplifiers and RF digitizers. This would represent a contribution by Canada equivalent to about $50-60M Canadian.

On the scientific front, ACURA activity in the SKA is closely tied to its support for the ACURA Advisory Council on the SKA (AACS) chaired by Bryan Gaensler. AACS has been very active in putting together a plan for Canadian scientific participation in the SKA. It has ensured effective Canadian participation in an international science workshop held in Stockholm on August 24-27, 2015, one of a series of meetings held to define the key science projects for SKA1. This will be followed by a Canadian SKA workshop in Toronto December 10-11 to further develop the plan for Canada’s contributions to the international science planning activity. AACS is also developing an ACURA sponsored Canadian SKA website intended for both domestic and international exposure to highlight Canadian involvement in the SKA. In addition, AACS has prepared a detailed report to the MTR panel on the areas where Canada expects to make scientific contributions in order to support the LRP priority of the SKA.

ACURA is financially supporting all of this activity, including the December workshop, the website preparation, the SKA luncheon meeting held at the CASCA meeting in Hamilton in May, 2015, and travel for the AACS Chair.

Overall, ACURA has its hands full for the coming year in both TMT and SKA. In addition, a new ACURA website is in preparation scheduled for completion this fall. It will be hosted at the University of Montreal. It will have a new look and feel, and will be kept up to date in both languages, which has been a problem with the old website. Thanks to ACURA secretary René Racine for initiating this project and seeing it through to completion.

Finally, I would welcome any feedback and suggestions from the community on these and/or other activities.

ALMA Matters

Submitted by Gerald Schieven
(Cassiopeia – Autumn/Automne 2015)

Cycle 3 Allocations

ALMA Cycle 3 observations will begin October 13, with the array in the extended configuration. Canada fared well in the recent allocation process. Of the 151 proposals with Canadian participation (36 as PI) requesting 1059 hours, 44 projects (6 as PI) were awarded “high priority” (grade A or B) status, with 313 hours. This represents over 14% of the total high priority allocation. (By comparison, in Cycle 2, projects with Canadian participation were awarded just over 11% of the total time.) There were 79 individuals from 18 different Canadian institutions on ALMA proposals for Cycle 3.

The 2015 ALMA Summer School

The NRC Herzberg Millimetre Astronomy Group (MAG), in its role as members of the North American ALMA Science Center, ran a successful summer school in Penticton from 17-21 August. Seven interferometry and ALMA experts led five days of talks and hands-on sessions for 18 graduate students, postdocs and ALMA observatory staff, ranging from the fundamentals of interferometry and radio astronomy to how the reduce ALMA data in CASA. The school was hosted at DRAO and included a wonderful tour of the new developments at DRAO: upgrades to the John A. Galt 26-m telescope, CHIME and the SKA prototype antenna.

Support

ALMA data reduction requires high powered computing with large amounts of scratch space. If you need access to such computing power for your ALMA data, the MAG at NRC Herzberg can help. Contact Brenda Matthews (brenda.matthews@ncr-cnrc.gc.ca) for more information.

President’s Report

Wison

By Chris Wilson, CASCA president
(Cassiopeia – Autumn/Automne 2015)

Hi, everyone,

As usual, the start of term crush has worked its usual “magic” and so this will again be a short report noting a few key highlights.

The IAU held its General Assembly in Honolulu in August. Canadians were well represented among the participants and invited speakers. Approximately 40 Canadian researchers became new members of the IAU at this meeting. Two Canadians were elected to high-level IAU committees: Bill Harris from McMaster University to the Membership Committee and JJ Kavelaars from NRC Herzberg to the Finance Committee.

I am sure many of you are following the latest news on the TMT from Hawai`i. As I write this, construction is still on hold and protesters continue to be present on the summit access road much of the time. The situation makes the news periodically, in Canada most recently on the CBC news program “As it happens”. The situation remains difficult for people on both sides of the issue and we need to be patient and let the parties closer to the situation try to work out a solution.

The Mid Term Review panel has continued working over the summer. They held a face-to-face meeting in Montreal in July, which included a meeting with staff at the Canadian Space Agency, and are beginning to draft up their report. The final report is scheduled to be released in late fall 2015.

The ACURA Advisory Committee on the SKA has also been active over the summer. There will be a meeting “Canada and the SKA” held in Toronto December 10-11, 2015. This meeting will be an opportunity for the Canadian community to assess its main interests and activities for the SKA, and to identify areas for synergy and coordination. The meeting will be held in conjunction with a meeting on the Murchison Widefield Array December 7-9, 2015. Registration is now open at http://mwatelescope.org/toronto/

Coming up this fall, expect to see a call for nominations for CASCA’s various awards to appear soon with a deadline likely late November or early December. This will be an earlier deadline than in previous years with the aim of allowing award winners to be identified early enough that it is more likely that they will be able to attend the CASCA AGM to be held in Winnipeg in 2016. The CASCA Board is also moving to establish a new Diversity Committee and will be looking for members for this new committee soon. The Board has also committed some funding from the Westar Fund to support a new application to the NSERC PromoScience program by Discover the Universe and the Dunlap Institute.

To close, I want to note four of our society’s members who have been honoured this past month. Roberto Abraham from the University of Toronto has been elected as a Fellow of the Royal Society of Canada. Julio Navarro from the University of Victoria has been awarded the Henry Marshall Tory Medal from the Royal Society of Canada. This medal is for outstanding research in any branch of astronomy chemistry, mathematics, physics, or an allied science. Matt Dobbs from McGill University and Sara Ellison from the University of Victoria have been named to The College of New Scholars, Artists and Scientists of the Royal Society of Canada. Congratulations to Sara, Matt, Julio, and Bob on these well-deserved awards.

First Discovery for a New Planet Finder

TORONTO [13 August 2015] An international team that includes astronomers from the Dunlap Institute for Astronomy & Astrophysics has discovered a first-of-its-kind “young Jupiter” exoplanet which could help explain how our Solar System formed. Called 51 Eri b, it is the first planet detected with a new exoplanet-hunting instrument called the Gemini Planet Imager (GPI).

Unlike the Kepler space telescope which detects exoplanets indirectly, the ground-based GPI lets astronomers see and study these distant worlds directly by first correcting for the blurring of the star’s image caused by the atmosphere, then by blocking out the star’s light to reveal the much fainter planet. In addition, GPI is a spectrograph, capable of analyzing light by wavelength.

The instrument was designed specifically for discovering and analyzing faint, young planets orbiting bright stars. “This is exactly the kind of planet we envisioned discovering when we designed GPI”, says James Graham, professor at UC Berkeley and Project Scientist for GPI.

Graham helped develop GPI while director of the Dunlap Institute. He and Stanford Physics Professor (and U of T alumnus) Bruce Macintosh lead the GPI collaboration and are lead authors of the SCIENCE paper announcing the discovery. Co-authors of the paper include Dunlap Fellows Jeffrey Chilcote and Jérôme Maire, as well as U of T PhD-candidate Max Millar-Blanchaer.

“With development spanning nearly a decade, GPI has required contributions from over a hundred extremely talented and devoted people,” says Chilcote, who was part of the team that developed GPI’s spectrograph. “It is simply breathtaking to see all of this hard work pay off with this exciting discovery.”

51 Eri b orbits a relatively young, 20 million year old star named 51 Eridani; the star is 100 light-years from Earth. Of all the exoplanets discovered through direct-imaging, 51 Eri b is the faintest and, at twice the mass of Jupiter, also the lowest-mass. It orbits slightly farther from its parent star than Saturn does from the Sun.

What’s more, 51 Eri b is the coolest of the exoplanets discovered through direct imaging. Its atmosphere is about 430°C—much cooler than most other exoplanets. Combined with the age of the system, this is a clue that the distant planetary system may have formed through a process called core-accretion that can also lead to smaller, rocky planets like Earth.

With its spectrograph, GPI also revealed a strong methane signal from 51 Eri b. Other exoplanets have only faint traces of methane, which makes this newly-discovered world much more like the methane-rich gas giants in our Solar System.

All of these characteristics, the researchers say, point to a planet that is very much what models suggest Jupiter was like in its infancy. According to Macintosh, “This planet really could have formed the same way Jupiter did—this whole planetary system could be a lot like ours.”

And according to Maire, a key member of the team that developed GPI’s data pipeline, “The discovery of this exoplanet, made possible by the development of high-contrast imaging techniques implemented in GPI, provides new insights into planet formation and evolution.”

The Gemini Planet Imager is installed on the Gemini South Telescope in northern Chile and began operating in late 2013. 51 Eri b is the first exoplanet to be discovered as part of the GPI Exoplanet Survey which will target 600 stars over the next 3 years.

-30-

Dunlap Institute contacts:

Dr. Jeffrey Chilcote

p: 416-946-5432

e: chilcote@dunlap.utoronto.ca<mailto:chilcote@dunlap.utoronto.ca>

Dr. Jérôme Maire

p: 416-978-6569

e: maire@dunlap.utoronto.ca<mailto:maire@dunlap.utoronto.ca>

Max Millar-Blanchaer

p: 416-978-3146

e: maxmb@astro.utoronto.ca<mailto:maxmb@astro.utoronto.ca>

Chris Sasaki

Communications Coordinator

p: 416-978-6613

e: media@dunlap.utoronto.ca<mailto:media@dunlap.utoronto.ca>