Report from LRPIC

From/de John Hutchings
(Cassiopeia – Summer/été 2017)

The LRP has a number of challenges at present, arising from different events and situations. We will continue to engage the community on these matters as they evolve.

TMT

The CATAC advisory committee has been very active and their report is also in this issue. The LRPIC has focussed more on alternatives to TMT should it no longer be a viable large telescope for Canada. This and related matters are in open discussion on the LRPIC-discuss mailing list, and there has been an open webex discussion and a plenary session at CASCA to give the community opportunities to be involved. The possibility of joining ESO has been the principal focus of these, although possible, but unspecified, collaboration between TMT and GMT has been in the background. At this point, LRPIC considers that the ESO alternative is risky in terms of government funding and approval, as well as being a major change in all our operations that may be unwieldy. Thus, as long as TMT proceeds with construction next year, at either site, we remain committed to it, with strong preference for the Hawaii site, if it is possible. However, major funding issues and solutions need more clarification to keep the confidence of the community.

SKA

The project has been undergoing a significant cost-saving exercise to keep SKA1 within the agreed budget. Ongoing concerns are that key science capability be retained, how Canadian partnership may be negotiated in the new IGO structure, and that Canadian contributions be agreed that enable our desired share of about 6%. A workshop to discuss these, and other radio facilities for the future, is to be held at McGill on September 13-14.

MSE

The design process is proceeding well and should be complete by the end of the calendar year. The challenges ahead include funding by all partners, and clarity on the future of MaunaKea for this and other telescopes.

CSA

The CSA budget currently is unable to support the LRP plans for WFIRST, CASTOR, SPICA, LiteBIRD, and Athena, and of course, any new opportunities that may arise in the next decade. This is a result of space science funding and priority having been badly eroded over the past years, with resources almost entirely dedicated to ISS and Radarsat. This dire overall situation is the subject of lobbying via the Coalition, input to the newly appointed Space Advisory Board, and a `white paper’ prepared by several members of the astronomy community. LRPIC is also participating in these initiatives.

Good news

This includes the expected completion, and early science commissioning of CHIME at DRAO this summer, the funding of access to JCMT by NSERC, and the beginning of construction of CCAT-prime, with expected Canadian partnership. We are following the future evolution of Gemini and possible links to Subaru, which are currently in play.

Survey says…

By/par Magdalen Normandeau (Cassiopeia co-editor)
(Cassiopeia – Summer/été 2017)

“Is anyone going to read this?” That’s what I asked myself as I pulled together a recent edition of the Cassiopeia. It seemed like an important question to ask about a newsletter. When it was first created, the purpose of Cassiopeia was clear: without the web or email, the hardcopy newsletter that members received a few times per year was an important tool for keeping the CASCA community in the loop about observatories, instruments, big projects, etc. Now, however, there’s email and a web page in addition to the newsletter, so does the Cassiopeia still serve a purpose?

Word cloud

Wordcloud created using the responses to the question “In your opinion, what is or should be the purpose of the Cassiopeia newsletter?” Words that appeared more often are in larger font. The colours and placement have no meaning.

When asked what the purpose of Cassiopeia is or should be, many CASCA members referred to community (the Canadian astronomy community, the CASCA community). For example, one survey respondent wrote “To relay news from the community to the community,” while another contributed “créer un esprit de communauté pan canadien.” One senior member of CASCA wrote: “I lived thru the pre-CASCA wars. Never let that kind of situation develop again. The newsletter has been a successful unifying factor.”

The majority (67%) of those who responded to the survey in April 2017 indicated that CASCA should continue to publish Cassiopeia, while only 11% said that Cassiopeia should be discontinued. However, most CASCA members did not choose to complete the survey: 139 surveys submitted – 119 in English and 20 in French. In other words, roughly a quarter of CASCA members were sufficiently interested to complete the survey. Thirty-one other people began the survey but did not get past the third question. Of those who completed the survey, 57% work or study at a university with opportunities for graduate work in astronomy and 23% work for a governmental agency (NRC, CSA). At 26.5%, mid-career people made up the greatest proportion of respondents from academia, followed by late career at 19.7% and emeritus at 14.5%. Only 6 graduate students and 7 postdocs chose to complete the survey, suggesting a lack of interest in CASCA affairs among the younger members.

While 69% of respondents were likely or very likely to read the titles in the announcement email for a new edition of Cassiopeia, only 57% were likely or very likely to follow through to look at the web actual newsletter. This corresponds to approximately 18% of CASCA members. Reasons given for being unlikely to read Cassiopeia include lack of time/feeling overwhelmed (22), information being available from other sources (13), lack of interest (8) and aspects related to presentation or format (8).

Types of articles

A list of types of articles that recently appeared in Cassiopeia was given for consideration. In retrospect, when designing the survey, it would have been more useful to have 3 categories for instruments/observatories instead of specifying instruments: 1) operational, 2) under development, 3) proposed. Hindsight is a wonderful thing. Be that as it may, the results are presented in the figure below. Only for the LRP updates and the message from the president did more than 50% of respondents indicate that they were likely or very likely to completely read the article.

Bar chart - Current article types

Responses to “How likely is it that you will at least scan or partially read the following article types?” The list of article types was drawn up based on the table of contents of recent editions of Cassiopeia.
Deep red = very unlikely. Deep blue = very likely. Stars indicate those for which more than half of the respondents indicated likely or very likely. Two stars indicate those that more than half the respondents indicated they were likely or very likely to read fully.

Members were also asked what they would like to read. The figure below shows the responses for the list of possibilities presented. More than 50% of respondents expressed interest in articles about statistics related to astronomy in Canada, award announcements, reports from the Ground-Based Astronomy Committee and from the Joint Committee on Space Astronomy, as well as conference announcements.

Responses to the question: "How likely would you be to read these types of articles?" Deep red = very unlikely. Deep blue = very likely.  Stars indicate those for which more than half the respondents chose "likely" or "very likely".

Responses to the question: “How likely would you be to read these types of articles?” Deep red = very unlikely. Deep blue = very likely. Stars indicate those for which more than half the respondents chose “likely” or “very likely”.

In addition to the options listed, several suggestions were made. These mostly fell into 3 categories: 1) the business of astronomy (astronomy & politics ; NSERC ; grant policies & implementations ; CASCA Board agenda & major outcomes), 2) research (research-oriented articles; papers published in previous quarter ; summaries of current Canadian astronomy research accomplishments ; progress reports of major research efforts), 3) people (news on new staff, new PDF hires ; profiles of astronomers in the news ; what has become of…? ; obituaries).

Redundancy and format

redundancy

Given the multiple means of communication at CASCA’s disposal (email, web site, newsletter), members were asked if they considered redundancy between emailed information and Cassiopeia to be desirable. The answers shown in the figure on the right suggest that while most CASCA members consider repetition of information acceptable, many would appreciate it if articles in Cassiopeia were written as proper articles, not simply direct repetitions of email messages.

When asked about the importance of images in articles, only 19.5% of respondents indicated that they were not important. On the matter of whether or not photos of authors should be included, most were indifferent.

In the comments related to format, 5 people stated that they would like to have a PDF version of the newsletter so that they could read it offline, 4 stated that they would prefer one continuous post rather than each article being a separate post linked to a table of contents, and 2 people suggested that the email announcement for the newsletter could be in a format similar to that used by NRAO, i.e. all articles titles would be listed in the email, with each title linked to its article, and perhaps the first few lines of each article would appear in the email as well. The latter suggestion is relatively easy to implement if the editors send emails directly to the list rather than submitting the announcement via the CASCA webpage where it is not possible to include hyperlinks.

Language

Currently, articles in Cassiopeia are published in the language in which they are submitted. Most are submitted only in English, with a few being submitted in both languages (NRC-Herzberg, CSA, Gemini). No articles in French only have been submitted in recent years. There would be logistical challenges to having the entire newsletter translated: the deadline would need to be a few weeks before publication rather than a few days, and the cost would probably be $1000 per edition (it might be more: I haven’t done a word-count or updated my awareness of the going rate for translation in quite a while). However, it is important to consider the matter as the predominance of English may be a barrier to participation for some CASCA members.

Members were asked if they had any comments related to the fact that Cassiopeia is currently mostly in English. Only 2 people wrote that the newsletter should be fully bilingual, and another 2 indicated that translation would be “worth it if French-speakers feel that it is limiting their participation in astronomy communications.” Most respondents on the English version of the survey wrote that they would defer to their francophone colleagues on this matter. As indicated above, only 20 people responded to the French version of the survey, and 2 of these requested a fully bilingual Cassiopeia.

Two people suggested that short abstracts in the other language would be worth considering. Two members stated that the message from the president should be bilingual.

Moving forward: thoughts and suggestions

Back to my original question: “Will anyone read this?” The answer can be stated two ways: either “Very few will read it, but it’s important to those who do” or “It’s important to those who read it, but very few will.” The response rate for the survey was low, only ~25%, and not all who responded consider it worth continuing to publish Cassiopeia. On the other hand, those in favour of continuing to publish Cassiopeia presented compelling arguments for doing so. The decision of whether or not to continue with Cassiopeia rests with the Board.

If CASCA continues to publish Cassiopeia, I would suggest the following:

  • Save non-urgent matters for Cassiopeia

    Throughout the various comment sections in the survey, there were several mentions of receiving too much email via the CASCA email exploder. I would suggest that non-urgent matters should not be sent via email, that they only be communicated via Cassiopeia.

  • Have the message from the president in both languages

    While only two people thought to suggest this, it seems like a reasonable thing to do. The president can either write his/her article directly in both languages or have it translated. It should be submitted in both languages.
    [For this edition, the President's Message was finalized too late to allow translation.]

  • Use NRAO-style format for the announcement-of-publication email

    While only two people suggested this specifically in the “suggestions regarding format” section, similar things were mentioned by some elsewhere in the survey. As this is relatively easy to implement, it should be done.
    [Done. Was it helpful for you? If so, please let us know. It takes a while to set up, so it's only worth doing if it makes a positive difference.]

  • Add a link to Cassiopeia under the News tab on the CASCA website

    Based on some of the comments, it was clear that some people did not know how to access Cassiopeia other than through the link in the announcement email. While it is possible to navigate to Cassiopeia on the website, how to do so would be more obvious if Cassiopeia appeared under the News tab.
    [Up to those who control the CASCA website.]

  • Articles about awards should be part of Cassiopeia

    Members of the awards committee should be encouraged to write articles about awards and their recipients, preferably going beyond the contents of the announcement email and making good use of appropriate images.
    [Encouragement was sent. No articles received for this issue.]

  • Updates from the Ground-Based Astronomy Committee and the Joint Committee for Space Astronomy should be included

    Respondents indicated that these would be of interest. The members of these committees should be encouraged to submit articles.
    [Encouragement was sent. No articles received for this issue.]

  • Authors should think about communication when writing articles
    • Write an article not an email
    • Write for your audience
    • Write informative/compelling titles and 1st paragraphs
    • Include some relevant visuals
    • (And authors probably shouldn’t write an article as long as this one…)

Reminders

As it says in the description of Cassiopeia:

“Members are invited to submit letters or articles of interest, Departmental or Observatory news, instrumentation ideas or proposals, symposium and meeting reports, and so forth, for publication in Cassiopeia.”

Articles can be submitted in French, in English, or in both English and French.

Cassiopeia is the society’s newsletter, it is what you, members of the society, make it.

Canadian Gemini News / Nouvelles de l’Office Gemini Canadien

By/par Stéphanie Côté (NRC Herzberg)
(Cassiopeia – Summer/été 2017)

La version française suit

Laura Ferrarese Interim Director of Gemini!

Markus Kissler-Patig, current Gemini Director, will be stepping down in July, to return to ESO. Markus’s remarkable leadership has brought many new ideas and initiatives to Gemini during his 5-years term, and we will dearly miss him. We were happy to learn that none other than astronomer extraordinaire Laura Ferrarese from NRC-Herzberg will be taking the helm of Gemini as Interim Director for a one-year term! She will be serving in Hilo while an international search is underway for a new permanent Director. See the Gemini press release here. We are delighted to see Gemini in very capable Canadian hands in the year to come.

New Next Instrument announced: introducing OCTOCAM!

The next instrument to be built as a facility instrument for Gemini has been selected, it will be OCTOCAM. The PI is Antonio de Ugarte Postigo (IAA) with co-PI Pete Roming (Southwest Research Institute). It is an 8-channel imager and spectrograph that will simultaneously observe the g, r, i, z, Y, J, H, and Ks bands in a square field-of-view of 3′x3′, or a circular one with a diameter of 4.24′. It can also do long slit (3′ long) spectroscopy with a resolution of R ~ 4,000, simultaneously covering the range between 0.37 – 2.35 microns.

The eight independent arms in OCTOCAM allow the user to adjust exposure times in each bandpass for increased efficiency and the best match to observing conditions. By using state of the art detectors – frame transfer in the optical and CMOS (complementary metal-oxide semiconductor) in the near infrared – OCTOCAM will have negligible readout times enabling high time-resolution observations (< 50 ms for a 30x30 pixel window). This temporal resolution will open up a new region of observation space.

Figure 1- OCTOCAM’s light path: the near-infrared optical bench (on top) will be cryogenically cooled. The visible optical bench (bottom) will be at ambient temperature. The instrument is simple and compact, with a minimum number of moving parts. Image Credit: A.de Ugarte Postigo

Figure 1- OCTOCAM’s light path: the near-infrared optical bench (on top) will be cryogenically cooled. The visible optical bench (bottom) will be at ambient temperature. The instrument is simple and compact, with a minimum number of moving parts. Image Credit: A.de Ugarte Postigo

Maunakea Dunlap Summer School students get VIP visit to Gemini

In order to insure that our Canadian observatories keep their leadership position, making Canadian research shine in tomorrow’s astronomical world, the contribution and training of young Canadian astronomers must be fostered through continued interactions. The Maunakea Dunlap Graduate School (MKDS) aims to expose Canadian astronomy graduate students to world-class instrumentation on site where they can participate in observations and data acquisition and processing, learn about the latest instrumentation, and interact with scientific and technical staff. Seven students from various Canadian universities participated in the 2017 MKDS last May, spending 10 days at the Gemini and CFHT headquarters and visiting various Maunakea Observatories, including the Gemini Northʻs Hilo Base Facility (HBF) and Gemini North’s summit telescope facility. At Gemini, students attended lectures by Gemini astronomers Laure Catala, André-Nicolas Chené, Inger Jorgensen, and Meg Schwamb who shared highlights on Geminiʻs recent science and instrumentation news. Students also acquired data using GMOS (under 0.5″ seeing!) and received instructions about data reduction. Similar equally successful and rewarding activities took place at CFHT. In addition to visiting and using CFHT and Gemini, students were able to visit the JCMT, Keck, and Subaru telescopes. This project is led by Prof. Stéphane Courteau at Queen’s University and Prof. Suresh Sivanandam at the Dunlap Institute. Canadian students wanting to participate in future MKDS must first attend the Dunlap Summer School on Astronomical Instrumentation.

Figure 2- Happy canadian students on their Gemini visit. Front row, left to right: Jonathan Saint-Antoine, Mie Beers, Vincent Chambouleyron, Nikhil Arora, Deborah Lockhorst, Taylor Roberton, Katie Harris. Back row, left to right: Gemini Public Information and Outreach Manager Peter Michaud, Suresh Sivanandam (Dunlap Institute), Stephane Courteau (group leader, Queen’s University), and Gemini Director Markus Kissler-Patig. Image Credit: Gemini Observatory/AURA

Figure 2- Happy canadian students on their Gemini visit. Front row, left to right: Jonathan Saint-Antoine, Mie Beers, Vincent Chambouleyron, Nikhil Arora, Deborah Lockhorst, Taylor Roberton, Katie Harris. Back row, left to right: Gemini Public Information and Outreach Manager Peter Michaud, Suresh Sivanandam (Dunlap Institute), Stephane Courteau (group leader, Queen’s University), and Gemini Director Markus Kissler-Patig. Image Credit: Gemini Observatory/AURA

Recent Canadian Gemini Press Releases

  • At the January 2017 AAS a team lead by Shriharsh Tendulkar (McGill) and including Victoria Kaspi (McGill) and Paul Scholz (NRC) presented the first optical follow-up of a Fast Radio Burst. Fast radio bursts (FRBs) are bright (~ Jy) and short (~ ms) bursts of radio emission, of which 18 have been detected over the past 10 years, but that had remained so far of unknown origin. FR121102 is the only repeat FRB for which it was then possible to get an accurate position (of 100 mas precision) thanks to VLA follow-up. Gemini then provided the crucial rapid follow-up to produce the first optical imaging and spectroscopy of a FRB. The Gemini data revealed that the FRB host is a small unassuming dwarf galaxy at z = 0.19, with a diameter of < 4 kpc and about 1% the mass of the Milky Way. This was surprising as it was assumed so far that most FRBs would come from large galaxies with more neutron stars (the top candidates to explain FRBs). This hints that FRBs may rather be linked to long-duration gamma-ray bursts and superluminous supernovae which frequently occur in dwarf galaxies. The paper published in ApJ is available here.
  • Figure 3 -Gemini composite image of the field around FRB 121102 (indicated). The dwarf host galaxy was imaged, and spectroscopy performed, using GMOS on the Gemini North telescope. Image Credit: Gemini Observatory/AURA/NSF/NRC

    Figure 3 -Gemini composite image of the field around FRB 121102 (indicated). The dwarf host galaxy was imaged, and spectroscopy performed, using GMOS on the Gemini North telescope. Image Credit: Gemini Observatory/AURA/NSF/NRC

  • In April an international team led by Wesley Fraser (Queen’s University, Belfast, UK) and including Brett Gladman (UBC), JJ Kavellars and Stephen Gwyn (NRC) had a press release with results from Gemini Large and Long Program “Colours of the Outer Solar System Object Survey” (Col-OSSOS). They studied a small population of blue-colored loosely-bound pairs of planetoids, hiding amongst the mainly red-colored Cold Classical Kuiper Belt objects. While the red CCKBOs are thought to have formed in their current location in the middle of the Kuiper Belt, this study suggests that the blue binaries actually formed in a region much closer to the Sun, and were then pushed out to their current location. This research indicates that when Neptune moved from 20 AU to its current location at 30 AU, several billions of years ago, this was a very slow and calm movement, which allowed the fragile and loosely bound binaries to be swept out a similar distance to where they are found currently without being disrupted into two separate single objects. The Nature Astronomy paper is available here.

Join the thousands and thousands of Gemini Observatory followers on Facebook https://www.facebook.com/GeminiObservatory and Twitter @GeminiObs



Laura Ferrarese Directrice Intérimaire de Gemini!

Markus Kissler-Patig, directeur actuel de Gemini, va se retirer de ses fonctions en juillet pour retourner à ESO. Le leadership remarquable de Markus a apporté de nombreuses nouvelles idées et initiatives à Gemini pendant son mandat de 5 ans, et il nous manquera beaucoup. Nous avons été heureux d’apprendre que nul autre que l’astronome exceptionnelle Laura Ferrarese du CNRC-Herzberg prendra la tête de Gemini comme directrice intérimaire pour un mandat d’un an! Elle servira à Hilo alors qu’une recherche internationale est en cours pour un nouveau directeur permanent. Consultez le communiqué de presse de Gemini ici. Nous sommes ravis de voir Gemini dans des mains canadiennes si compétentes dans l’année à venir.

Prochain nouvel instrument: voici OCTOCAM!

Le prochain instrument qui sera construit en tant qu` instrument de base pour Gemini a été sélectionné, ce sera OCTOCAM. Le PI est Antonio de Ugarte Postigo (IAA) avec le co-PI Pete Roming (Southwest Research Institute). Il s’agit d’un imageur et d’un spectrographe à 8 canaux qui observeront simultanément les bandes g, r, i, z, Y, J, H et Ks dans un champ de vision carré de 3′x3′ ou une circulaire de diamètre de 4,24 minutes d`arc. Il peut également faire de la spectroscopie à fente longue (sur 3′) avec une résolution de R ~ 4,000, couvrant simultanément la plage spectrale de 0,37 à 2,35 microns.

Les huit bras indépendants d’ OCTOCAM permettent à l’utilisateur d’ajuster les temps d’exposition dans chaque bande passante pour une efficacité accrue et une meilleure adaptation aux conditions d’observation. En utilisant des détecteurs de pointe – transfert de trâme dans l’optique et CMOS (semi-conducteur d’oxyde de métal complémentaire) dans l’infrarouge proche – OCTOCAM aura des temps de lecture négligeables permettant des observations à haute résolution de temps (< 50 ms pour une fenêtre de 30x30 pixels). Cette résolution temporelle ouvrira une nouvelle région d'espace d'observation.

Figure 1- Le trajet optique d'OCTOCAM: le banc optique en infrarouge proche (en haut) sera refroidi cryogéniquement. Le banc optique en visible (en bas) sera à température ambiante. L'instrument est simple et compact, avec un minimum de pièces mobiles. Crédit d'image: A.de Ugarte Postigo

Figure 1- Le trajet optique d’OCTOCAM: le banc optique en infrarouge proche (en haut) sera refroidi cryogéniquement. Le banc optique en visible (en bas) sera à température ambiante. L’instrument est simple et compact, avec un minimum de pièces mobiles. Crédit d’image: A.de Ugarte Postigo

Les étudiants du Maunakea Dunlap Summer School font une visite VIP à Gemini

Afin d’assurer que nos observatoires canadiens conservent leur position de leaders, et que la recherche canadienne continue de rayonner dans le monde astronomique de demain, la contribution et la formation des jeunes astronomes canadiens doivent être favorisées par des interactions continues. La Maunakea Dunlap Graduate School (MKDS) vise à exposer les étudiants diplômés canadiens en astronomie à l’instrumentation de classe mondiale in-situ où ils peuvent participer aux observations et à l’acquisition et au traitement de données, en apprendre davantage sur les derniers instruments de pointe, tout en interagissant avec le personnel scientifique et technique. Sept étudiants de diverses universités canadiennes ont participé au MKDS de 2017 en mai, en passant 10 jours au quartier général de Gemini et CFHT et en visitant divers observatoires au Maunakea, y compris la base de Gemini Nord à Hilo (HBF) ainsi que le télescope Gemini Nord au sommet. À Gemini, les étudiants ont assisté à des conférences par les astronomes Laure Catala, André-Nicolas Chené, Inger Jorgensen et Meg Schwamb qui ont partagé des points saillants sur les dernières nouvelles scientifiques et instrumentales de Gemini. Les étudiants ont également acquis des données avec GMOS (sous un seeing de moins de 0,5″!) et ils ont reçu des instructions sur la réduction de données. Des activités toutes aussi réussies et enrichissantes ont eu lieu à CFHT. En plus de visiter et utiliser CFHT et Gemini, les étudiants ont pu visiter les télescopes JCMT, Keck et Subaru. Ce projet est dirigé par le Professeur Stéphane Courteau de l’Université Queen’s et le Professeur Suresh Sivanandam de l’Institut Dunlap. Les étudiants canadiens qui souhaitent participer au futur MKDS doivent d’abord fréquenter l’école d’été Dunlap d’instrumentation astronomique.

Figure 2-Étudiants canadiens heureux de leur visite à Gemini. Première rangée, de gauche à droite: Jonathan Saint-Antoine, Mie Beers, Vincent Chambouleyron, Nikhil Arora, Deborah Lockhorst, Taylor Roberton, Katie Harris. En arrière, de gauche à droite: Responsable de l’Information et la Vulgarisation à Gemini, Peter Michaud, Suresh Sivanandam (Dunlap Institute), Stéphane Courteau (chef du groupe, Queen's University) et Directeur de Gemini Markus Kissler-Patig. Crédit d'image: Observatoire Gemini / AURA

Figure 2-Étudiants canadiens heureux de leur visite à Gemini. Première rangée, de gauche à droite: Jonathan Saint-Antoine, Mie Beers, Vincent Chambouleyron, Nikhil Arora, Deborah Lockhorst, Taylor Roberton, Katie Harris. En arrière, de gauche à droite: Responsable de l’Information et la Vulgarisation à Gemini, Peter Michaud, Suresh Sivanandam (Dunlap Institute), Stéphane Courteau (chef du groupe, Queen’s University) et Directeur de Gemini Markus Kissler-Patig. Crédit d’image: Observatoire Gemini / AURA

Communiqués de presse canadiens récents

  • Au AAS de janvier 2017, une équipe dirigée par Shriharsh Tendulkar (McGill) et incluant Victoria Kaspi (McGill) et Paul Scholz (NRC) a présenté le premier suivi optique d’un Fast Radio Burst. Ces explosions radio rapides (FRB) sont de puissantes (~ Jy) et très courtes (~ ms) émissions radio, dont 18 ont été détectées au cours des 10 dernières années, mais qui sont restées jusqu’à présent d’origines inconnues. FR121102 est la seule FRB répétitive pour laquelle il a été alors possible d’obtenir une position précise (à une précision de 100 mas) grâce à un suivi VLA. Gemini a ensuite fourni le suivi crucial rapide pour produire la première imagerie optique et spectroscopie d’un FRB. Les données de Gemini ont révélé que l’hôte du FRB est une petite galaxie naine sans prétention à z = 0,19, avec un diamètre <4 kpc et environ 1% de la masse de la Voie Lactée. Ceci est surprenant car on avait supposé jusqu'à présent que la plupart des FRB viendraient de grandes galaxies avec plein d'étoiles à neutrons (les meilleurs candidates pour expliquer les FRB). Cela indique que les FRB pourraient plutôt être liés à des rayonnements de rayons gamma de longue durée et à des supernovae superlumineuses qui se produisent fréquemment dans des galaxies naines. L’article publié dans ApJ est disponible ici.
  • Figure 3 - Image composite de Gemini du champ autour de FRB 121102 (indiqué). La galaxie naine hôtesse du FRB a été imagée, et des spectres ont aussi été obtenus, grâce à GMOS sur le télescope Gemini-Nord. Crédit d'image: Observatoire Gemini / AURA / NSF / NRC

    Figure 3 – Image composite de Gemini du champ autour de FRB 121102 (indiqué). La galaxie naine hôtesse du FRB a été imagée, et des spectres ont aussi été obtenus, grâce à GMOS sur le télescope Gemini-Nord. Crédit d’image: Observatoire Gemini / AURA / NSF / NRC

  • En avril, une équipe internationale dirigée par Wesley Fraser (Queen’s University, Belfast, Royaume-Uni) et incluant Brett Gladman (UBC), JJ Kavellars et Stephen Gwyn (NRC) ont émis un communiqué de presse sur les résultats de leur Programme Long et Large à Gemini “Colours of the Outer Solar System Object Survey” (Col-OSSOS). Ils ont étudié une petite population de paires de planétoïdes faiblement liées de couleur bleue, se cachant parmi les objets de la Ceinture de Kuiper Classique froide (CCKBO) qui sont principalement rouges. Alors que les CCKBO rouges sont censés s’être formés dans leur emplacement actuel au milieu de la ceinture de Kuiper, cette étude suggère que les binaires bleus se sont formés dans une région beaucoup plus proche du Soleil, et ont ensuite été poussés à leur emplacement actuel. Cette recherche indique que lorsque Neptune est passé de 20 UA à son emplacement actuel à 30 UA, il y a plusieurs milliards d’années, cela s’est produit par un mouvement très lent et calme qui a permis aux paires fragiles et faiblement liées d’être balayées d’une distance similaire pour se retrouver à leur emplacement actuel sans être séparées en deux objets individuels distincts. L’article Nature Astronomy est disponible ici.

Rejoignez les milliers et milliers de followers de l’Observatoire Gemini sur Facebook https://www.facebook.com/GeminiObservatory et Twitter @GeminiObs

2015 Martin Award

CASCA is pleased to announce that the recipient of the 2015 Peter G. Martin award is Dr. Laura Ferrarese of NRC-Herzberg.

Dr. Ferrarese received her PhD in 1996 from Johns Hopkins University, and became a tenured professor at Rutgers University 8 years later. In 2004, Dr. Ferrarese moved to Canada as a senior research officer at NRC-Herzberg, and was promoted to Principal Research Officer in 2012. She has been honoured with several prize and guest lectureships across North America such as the 2014 CASCA/RASC Helen Sawyer Hogg lecture, and was awarded the Queen Elizabeth II Diamond Jubilee medal in 2012.

Dr. Ferrarese is an internationally recognised leader in galaxy dynamics and scaling relations, supermassive black holes, active galactic nuclei, and the extragalactic distance scale. In particular, her seminal work on the relationship between the masses of supermassive black holes and the stellar velocity dispersions of the bulges in their host galaxies is among the most highly cited papers in astronomy and astrophysics. Since that time, she has taken on leadership roles in several major galaxy surveys with the Hubble Space Telescope and the Canada-France-Hawaii Telescope.

CASCA congratulates Dr. Ferrarese on the receipt of the 2015 Martin award.

2016 Plaskett Medal

CASCA is pleased to announce Dr. Jonathan Gagné as the 2016 recipient of the J.S. Plaskett Medal.

Dr. Gagné completed his doctoral studies at l’Université de Montréal under the supervision of Dr. David Lafrenière and Dr. René Doyon. His thesis, entitled “La recherche de naines brunes et étoiles de faible masse dans les associations cinématiques jeunes du voisinage solaire”, identifies and characterizes new substellar mass objects that belong to nearby young associations of stars. Dr. Gagné developed a powerful new algorithm to select highly probable substellar objects in young associations that is now widely used by the community. He also carried out an all-sky survey to identify, follow-up and characterize actual candidates, more than doubling the number of confirmed brown dwarfs.
Dr. Gagné is now widely recognized as a leading figure in the study of nearby young substellar objects.

Dr. Gagné is currently a Sagan Postdoctoral Fellow in the Department of Terrestrial Magnetism at the Carnegie Institution for Science, where he will work to identify and characterize young brown dwarfs with only a few times the mass of Jupiter.

CASCA congratulates Dr. Gagné on the receipt of the 2016 J.S. Plaskett Medal.

2016 Qilak Award for Astronomy Communications, Public Education and Outreach

CASCA is pleased to announce Dr. Jaymie Matthews, from the University of British Columbia, as the 2016 recipient of the Qilak Award.

After obtaining his Ph.D. from the University of Western Ontario in 1987, Dr. Matthews held positions at Western and l’Université de Montréal before moving to the University of British Columbia as a Killam Postdoctoral Fellow in 1988. He obtained tenure at UBC in 2000, and has been a full professor there since 2008.

Dr. Matthews’ dedication and boundless enthusiasm for communicating with the public about astronomy are illustrated by the dozens of outreach activities in which he participates annually, ranging from public presentations, to radio interviews, to campus tours, to TV show consultations. Beyond his legendary teaching reputation at UBC, he has given courses aimed at younger children as well as special lectures in Vancouver’s Downtown Eastside, the First Nations Summer Science Programme, and the Canadian Association of Physics (CAP) undergraduate lecture series, among many others. In recognition of these efforts, Dr. Matthews received the CAP Education Medal in 2002, was named an officer of the Order of Canada in 2006, and received the Queen Elizabeth II Diamond Jubilee Medal in 2012.

Please join CASCA in thanking Dr. Matthews for his selfless dedication to improving public understanding and appreciation of science and astronomy.

Alan Nursall, Featured Speaker at the CASCA-2017 EPO Session

By Sharon Morsink (CASCA EPO Committee member & CASCA-2017 co-organizer)
(Cassiopeia – Spring/printemps 2017)

This year’s CASCA conference in Edmonton will feature an invited talk by Alan Nursall in the Education and Public Outreach session. Alan is the President and CEO of Telus World of Science Edmonton, Edmonton’s Science Museum. He also hosts a weekly science segment on Discovery Channel Canada’s show Daily Planet. Past positions include Science Director at Science North in Sudbury. He holds an MSc in geography and meteorology from the University of Alberta. He has extensive science communication experience through his work at science centres and on television.

In a recent interview he was asked “Why is it important to get people excited about science?” His answer: “People always say, `Science takes the beauty out of everything.’ No, it doesn’t! Science is gorgeous. We need to have a continuous, ongoing discussion about how we understand our world, and science is one of the lenses.”

Alan Nursall’s talk will inspire us to continue to communicate our love of astronomy to the public.

Time Dependence of the RXTE X-ray Spectrum of Hercules X-1/HZ Hercules

(Cassiopeia – Spring/printemps 2017)

by Mohammed Hassan Abdallah
Thesis defended in September 2016
Department of Physics and Astronomy, University of Calgary
Thesis advisor: Dr. Dennis Leahy

Abstract

We study the time dependence of the energy spectra (i.e. of the spectral model parameters, and the interpretation) of the X-ray binary system Hercules X-1/HZ Hercules (Her X-1/HZ Her) over the superorbital/35-day cycle. The results are discussed separately in two parts: one for the data during the main high state and one for the data obtained during low state and short high state. We made use of data collected by RXTE/PCA instrument in the standard-2 mode during the period from July,1996 to August of 2005 (MJD = 50290 to 53584) acquired as a result of 23 study proposals for observing the HZ Her/Her X-1 system. Observations made while the system was in anomalous low state (ALS) were removed, as the ALS are believed to be caused by a change in the status of the disc which results in disappearance of the 35-day superorbital cycle. In our data there are two anomalous low states (MJD = 51226:4 to 51756:9 & MJD = 52950:6 to 53159:4). Due to the rapid change of count rates and energy spectra during eclipse and dips periods, we remove these periods from our analysis. The main results during main high state are directly linked to the disc precession and its effect in occulting the central source and surrounding emission regions, while results obtained for the low state and short high state are related to the changing visibility of the irradiated face of HZ Her which contributes to the observed spectra by the reflected emission off of its heated face.

Square Kilometre Array (SKA) Update

SKA logoBy/par Bryan Gaensler, Canadian SKA Science Director
(Cassiopeia – Spring/printemps 2017)

For more information on the SKA, subscribe to the Canadian SKA email list, and visit the Canadian SKA WWW site.

“Canadian Radio Astronomy: Surveying the Present and Shaping the Future”

A meeting will be held over September 13-14, 2017, in Montréal to assess the present and future landscape of Canadian radio astronomy, defined broadly to span the frequency range from ~50 MHz to ~100 GHz, utilising instruments such as CHIME, the JVLA, ALMA, the various SKA pathfinders and precursors, and more. The meeting will be an opportunity for the entire Canadian astronomy community (including students and postdocs) to present and discuss their frontline research with current radio facilities, the status of planned facilities, and the community’s scientific priorities for the next generation of observatories such as the ngVLA and SKA. There will be a strategy session on the afternoon of the second day, where we will have an initial discussion on possible radio contributions to the next Long Range Plan. To register, please fill out this form by March 31st, 2017.

Canadian SKA Pre-Construction Activities

NRC Herzberg has continued its work on pre-construction for the SKA1-Mid correlator/beamformer (CBF), the single pixel feed digitisers, and the band 2 and band 5 low noise amplifiers, with the focus remaining on completing Critical Design Reviews by December 2017.

The Mid.CBF and Low.CBF teams initiated discussions to see if there was a possibility of converging the NRC and CSIRO/ASTRON correlator/beamformer designs and of sharing development pieces. The functional requirements for SKA1-Mid and SKA1-Low are sufficiently different that full convergence is not possible, but the teams have agreed to share design pieces.

The single pixel feed digitisers will undergo a Detailed Design Review (DDR) within the Dish Consortium over January 30-31, 2017 prior to building pre-production units for on-site testing later this year.

The band 2 low-noise amplifier (LNA) specifications have been ratified by the Dish Consortium, and the band 2 feed design from EMSS South Africa passed its DDR in Nov 2016. NRC is proceeding to supply LNAs for the pre-production units for on-site testing. The band 5 change request to split the 3:1 band into two 1.85:1 bands 5A and 5B was approved, and prototype LNAs are being prepared by NRC for consideration in a competitive design of these split bands.

The construction and operating cost review, mandated from the SKA Board, is being led by SKAO with nine ‘streams’ of examination:

  • Reuse of precursor or pathfinder designs
  • Alternative antennas
  • Reduced operating model
  • Critical review of consortia cost estimates
  • Review of identified cost reduction options
  • Over-specified requirements
  • Over design
  • Explore SDP savings
  • Procurement model

The consortia are supporting this effort, and went through full day cost reviews discussions in February 2017, leading to recommendations to the SKA Board meeting in March 2017.

Canadian SKA Science Activities

The University of Toronto and the University of Cape Town are jointly hosting a major science conference, “Fundamental Physics with the Square Kilometre Array”, to be held in Mauritius over May 1-5, 2017. The purpose of this meeting is to engage the theoretical physics (as opposed to astrophysics) community in the science case and design considerations for the full array (further details).

The SKA project maintains 11 international science working groups and another 2 focus groups. Membership of science working groups and focus groups is open to all qualified astronomers. If you are interested in joining one of these groups, please contact Bryan Gaensler (bgaensler@dunlap.utoronto.ca).

The 2016 SKA Engineering meeting was held in Stellenbosch in October 2016. Twelve Canadians attended, representing NRC, CADC, and MDA. The 2016 SKA Science meeting was held in Goa in November 2016. Six Canadians attended, representing Toronto, NRC, McGill ,and Calgary. The 2017 SKA Engineering meeting will be held in Rotterdam in June 2017.

CFI Proposal on Radio Astronomy Data Services

A $9.4M funding proposal has now been submitted to the 2017 round of the CFI Innovation Fund program, with the goal of developing the tools and infrastructure needed to support a Canadian SKA Data Centre. The proposal is entitled “Unlocking the Radio Sky with Next-Generation Survey Astronomy”, and is a partnership between U. Toronto (lead), U. Alberta, UBC, U. Manitoba, Queen’s U., McGill U., CADC and NRAO, along with selected other international collaborators. If successful, the proposal will fund 14 staff and $3.6M of equipment over five years, through which the proposing team will derive and archive advanced data products for major new surveys with the VLA, CHIME and ASKAP. Results are expected in around June 2017.

Murchison Widefield Array

The Murchison Widefield Array (MWA) is one of three designated SKA precursors. Construction is now well advanced for MWA phase 2, which will improve the sensitivity of the array by an order of magnitude. The legal process to add the University of Toronto as a partner to MWA phase 1 is now complete, providing Canada with one seat on the MWA Board as part of a North American consortium. Bryan Gaensler has taken up this seat and is participating in Board meetings. The next step is to establish a new legal framework for MWA phase 2, in which Canada will participate in its own right rather than in partnership with the USA. The process of developing the relevant documentation has commenced.

ACURA Advisory Council on the SKA

The Association of Canadian Universities for Research in Astronomy (ACURA) coordinates activities and discussion on the SKA through the ACURA Advisory Council on the SKA (AACS); see skatelescope.ca/canada-and-the-ska/committees-working-groups/ for a listing of AACS membership. AACS meets several times per year, with its next meeting in June, 2017. For further information or to propose AACS agenda items, please contact the AACS Chair, Bryan Gaensler (bgaensler@dunlap.utoronto.ca).

SKA Regional Centres

In 2016, the SKA Board endorsed the concept of SKA Regional Centres (SRCs) as its preferred model for meeting and managing the challenges posed by the extremely high data rates, data volumes and data analysis requirements of SKA Phase 1. As such, the essential functions of a network of SRCs are to:

  • provide access to SKA data products, subject to SKA data access policies;
  • provide the computational resources for processing, including science analysis and data visualisation;
  • provide a common platform for the continued development and certification of software and data analysis tools;
  • provide a long-term science archive for SKA data products; and
  • provide local user support to their communities.

The SKA Office has now established an SKA Regional Centre Coordination Group (SRCCG), with representation from member countries/regions interested in hosting an SRC. The responsibilities of the SRCCG include defining a minimum set of requirements for individual SRCs, developing an accreditation process for the SRCs, developing a process to ensure that software tools are interoperable across the SRC network, and investigating models for the future governance of the collaborative network of SRCs. The SRCCG began monthly meetings in September 2016; Séverin Gaudet (NRC) has been appointed as the Canadian representative.
To provide input to the SRCCG and to shape a vision for an SRC in Canada, the AACS has formed a Canadian SKA Regional Centre Advisory Committee (CSRCAC), chaired by Erik Rosolowsky (U. Alberta). CSRCAC has now established its terms of reference, and held its first meeting in February 2017. A range of initial issues have been discussed, including consultation with the local astronomical community, the need to engage with other Canadian stakeholders (CANARIE, Compute Canada, CADC, CFI), and the potential for collaboration with other countries/regions.

International SKA Lanscape

The SKA Board (for which Greg Fahlman and Bryan Gaensler are the two Canadian directors) met most recently in July 2016 and November 2016; both meetings were held at SKA HQ at Jodrell Bank, UK). A meeting of the SKA Members (at which Greg Fahlman represented NRC) took place via videoconference in December 2016. The SKA Board’s Executive Committee (of which Bryan Gaensler is a member) meets monthly.

Notable outcomes from the last two SKA Board meetings have included:

  • A decision to undertake a review of the existing SKA design and to explore and capitalise on a range of cost-saving measures, in order to ensure the delivery of SKA1 against the defined cost cap of €674M (2016 Euros). This includes drawing on cost reduction options already identified and further exploiting potential cost-saving and risk-reduction technology developments and solutions provided by SKA precursor and pathfinder facilities. This work is being performed under the guidance of a Cost Update Subcommittee (CUS) of the Board, comprising all SKA Board Science Directors. The CUS aims to preserve the transformational science capabilities of SKA1, while minimising impact on the project schedule and allowing expansion of the telescopes as additional funding becomes available. The SKA Office will present preliminary recommendations on a cost update to the March 2017 Board meeting.
  • Extensive ongoing discussion of a proposed budget and business plan for the SKA Organisation (SKAO) through 2019 and into the transition into an intergovernmental treaty organisation (IGO).
  • Consideration of a staged construction plan for SKA1.
  • Approval of the top-level principles governing SKA operations, including recognition of the advantages of appointing CSIRO and SKA South Africa as preferred bidders for the operation of the two telescope sites in Australia and South Africa, respectively.
  • Receipt of a comprehensive review from the SKA Management Review Panel, and initiation of activity to implement the resulting recommendations.
  • Consideration of an SKA Observatory Development Program, aimed at pursuing advanced instrumentation for future SKA upgrades.
  • Discussion of the formation of a new international Phased Array Feed technology consortium.
  • Ongoing overviews of the SKA Headquarters and Site Hosting agreements, and of the design and construction of the SKA Headquarters.
  • Ongoing discussion of costing, scheduling, construction plans, engineering reports, operations plans, hosting agreements, and transition planning from a company limited by guarantee into an intergovernmental organisation (IGO).

The SKA Board meetings for 2017 will be in March, July and November.

Negotiations to form an IGO to replace the current SKA Organisation are ongoing. Negotiation meetings have taken place in Rome in October 2015, January 2016, April 2016, September 2016 and February 2017. Canada has not participated in these negotiations, but Gilles Joncas (ACURA) and Greg Fahlman / Sean Dougherty (NRC) have attended these meetings as observers. If the Canadian government decides not to participate in the IGO, an alternative option for Canadian astronomy is associate membership in the SKA IGO. Note that at present associate membership is a poorly understood concept, envisioned as a matter of negotiation between the IGO Council and the petitioning State.

For further information on international SKA activities, see the latest SKA Newsletter and the bi-monthly SKA Organisation Bulletin.

Astrosat Observatory Update

By John Hutchings (NRC)
(Cassiopeia – Spring/printemps 2017)

M31 FUV F1 7981sec

ISRO’s Astrosat observatory is in regular operations and all instruments are working well. The UVIT telescopes, for which Canada supplied the photon-counting detectors, are performing well above spec and have no sign of degradation after 18 months in orbit. The accompanying image shows the centre of M31 in the FUV (roughly 150nm wavelength), from a program of Denis Leahy. The hot population around the nucleus, dust clouds, and young clusters in the spiral arms, are evident. Other Canadian observing programs range from X-ray binaries to star-forming galaxies, AGN, and galaxy clusters.

Refinements in drift correction and distortion corrections by CSA’s science support, Joe Postma, are producing matched images with 0.9” to 1.0” resolution in various filters, and the ability to do time analysis of fluxes. UVIT and the three X-ray instruments all observe together, allowing for multi-wavelength investigations. Canada has guaranteed 5% of observing time, and cycles will be for a full year, beginning this October. Expect a call for proposals around June. Astrosat will also be open for a quota of international proposals in future, and discussions are under way for a single TAC process. Proposal pressure from India remains high.